Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công thức đặc biệt: a chia b dư 0 hoặc 1 thì an cũng chia b dư 0 hoặc 1.
a, Ta thấy 10 chia cho 9 dư 1 => 102011 chia cho 9 dư 1
Mà 8 chia cho 9 dư 8
Từ 2 điều trên => 102011 + 8 chia 9 dư 1 + 8 hay chia hết cho 9
Vậy...
b, Vì 13a5b chia hết cho 5 => b thuộc {0; 5}
+ Nếu b = 0 thì ta có:
13a50 chia hết cho 3
=> 1 + 3 + a + 5 + 0 chia hết cho 3
=> 9 + a chia hết cho 3
=> a thuộc {0; 3; 6; 9}
Vậy...
+ Nếu b = 5 thì ta có:
13a55 chia hết cho 3
=> 1 + 3 + a + 5 + 5 chia hết cho 3
=> 14 + a chia hết cho 3
=> a thuộc {1; 4; 7}
Vậy...
64 + 240 chia hết cho 8 { vì 64 chia hết cho 8 ; 240 chia hết cho 8 }
a;so con lai se chia het cho 5
vi tong cua 2 so chia het cho 5 khi ca 2 so do chia het cho5
b;so con lai se chia het cho7
vi hieu cua hai so chi het cho7 khi va chi khi ca hai so do cung chia het cho7
B = 2 + 2² + 2³ + 2⁴ + ... + 2⁹⁹ + 2¹⁰⁰
= 2 + (2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷) + ... + (2⁹⁸ + 2⁹⁹ + 2¹⁰⁰)
= 2 + 2².(1 + 2 + 2²) + 2⁵.(1 + 2 + 2²) + ... + 2⁹⁸.(1 + 2 + 2²)
= 2 + 2².7 + 2⁵.7 + ... + 2⁹⁸.7
= 2 + 7.(2² + 2⁵ + ... + 2⁹⁸)
Ta có:
2 không chia hết cho 7
7.(2² + 2⁵ + ... + 2⁹⁸) ⋮ 7
Vậy B không chia hết cho 7
Dãy số B được tạo thành bằng cách cộng các lũy thừa của số 2 từ 2^1 đến 2^100. Ta có thể viết B như sau:
B = 2^1 + 2^2 + 2^3 + … + 2^99 + 2^100
Chúng ta có thể nhận thấy rằng mỗi số trong dãy B đều chia hết cho 2. Điều này có nghĩa là mỗi số trong dãy B đều có dạng 2^n, với n là một số nguyên không âm.
Nếu chúng ta xem xét các số trong dãy B theo modulo 7 (lấy phần dư khi chia cho 7), chúng ta sẽ thấy một chu kỳ lặp lại. Cụ thể, chu kỳ lặp lại này có độ dài là 6 và gồm các giá trị: 2, 4, 1, 2, 4, 1, …
Vì vậy, để tính tổng của dãy B, chúng ta có thể chia tổng số lũy thừa của 2 (tức là 100) cho 6, lấy phần dư và tìm giá trị tương ứng trong chu kỳ lặp lại. Trong trường hợp này, 100 chia cho 6 dư 4, vì vậy chúng ta sẽ lấy giá trị thứ 4 trong chu kỳ lặp lại, tức là 2.
Vậy, B khi chia cho 7 sẽ có phần dư là 2. Điều này có nghĩa là B không chia hết cho 7.
\(10^{2011}+5⋮3\)Vì :
\(10^{2011}+5=100000..00000+5\left(\text{có 2011 số 0}\right)\)
Vì dấu hiệu chia hết cho 3 là Tổng các chữ số chia hết cho 3.
Nên ta có \(1+0+0+0+...+0+5=6⋮3\)
=> 102011 + 5 chia hết cho 3
Xét:\(10:3=3\left(dư1\right)\)
\(10^2:3=33\left(dư1\right)\)
\(10^3:3=333\left(dư1\right)\)
....................................................
\(\Rightarrow10^{2011}:3\left(dư1\right)\)
\(\Rightarrow10^{2011}=3k+1\)
\(\Rightarrow10^{2011}+5=3k+1+5=3k+6⋮3\)
\(\Rightarrow10^{2011}+5⋮3\)
đúng nha bạn@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
Ta có: B=7+72+73+...+78
=(7+73)+(72+74)+...+(76+78)
=7(1+14)+72(1+14)+...+76(1+14)
=7.15+72.15+...+76.15
=15(7+72+...+76) chia hết cho 5
vậy B chia hết cho 5
\(B=7+7^2+7^3+...+7^8\)
\(B=7\left(1+7^2\right)+7^2\left(1+7^2\right)+7^3\left(1+7^2\right)+7^4\left(1+7^2\right)+7^5\left(1+7^2\right)+7^6\left(1+7^2\right)\)
\(B=7.15+7^2.15+...+7^6.15\)
\(B⋮15\Rightarrow B⋮3\)