Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có: \(\begin{matrix}a\text{ // }b\\a\perp AB\end{matrix}\Rightarrow b\perp AB\)
b/ \(\hat{ACD}+\hat{CDB}=180^o\) (trong cùng phía, a // b)
\(\Rightarrow\hat{CDB}=180^o-\hat{ACD}=60^o\)
\(\hat{ACD}+\hat{aCD}=180^o\) (kề bù)
\(\Rightarrow\hat{aCD}=180^o-\hat{ACD}=60^o\)
Vì (2x-1)^6=(2x-1)^8
(2x-1)^8-(2x-1)^6=0
(2x-1)^6[(2x-1)^2-1)]=0
th1 (2x-1)^6 suy ra 2x-1=0 suy ra x=1/2
th2 (2x-1)^2-1=0
(2x-1)^2=1
suy ra 2x-1 bằng 1;-1
th1 2x-1=1 suy ra x=1
2x-1=-1 suy ra x=0
27/23 + 5/21 - 4/23 + 6/21 + 1/2
=( 27/23 - 4/23 ) + ( 5/21 + 6/21 ) + 1/2
= 23/23 + 11/21 + 1/2
= 1 + 11/21 + 1/2
= 32/21 + 1/2
= 85/42
\(\frac{27}{23}+\frac{5}{21}-\frac{4}{23}+\frac{6}{21}+\frac{1}{2}\)
\(=(\frac{27}{23}-\frac{4}{23})+(\frac{5}{21}+\frac{6}{21})+\frac{1}{2}\)
\(=1+\frac{11}{21}+\frac{1}{2}\)
\(=\frac{32}{21}+\frac{1}{2}=\frac{85}{42}\)
Chúc bạn học tốt
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
`B=x^2-9=0`
`-> x^2=0+9`
`-> x^2=9`
`-> x^2=(+-3)^2`
`-> x=+-3`
Vậy, đa thức `B` có `2` nghiệm là `x={3 ; -3}`.