K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2018

ta có B=3-2x+2x+1
=>B=4
b)với x=2015 thì B=4

4 tháng 12 2018

\(B=3-2x+\sqrt{1+4x+4x^2}=3-2x+\sqrt{\left(2x+1\right)^2}=3-2x+\left|2x+1\right|\)

Nếu \(x\ge-\frac{1}{2}\Rightarrow B=3-2x+2x+1=4\)

Nếu \(x< -\frac{1}{2}\Rightarrow B=3-2x-2x-1=4-4x\)

b, x = 2015 tức là \(x>-\frac{1}{2}\)

Vậy với x = 2015 thì B = 4

15 tháng 7 2021

a, \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)ĐK : \(x>0;x\ne1\)

\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b,Ta có  \(x=3+2\sqrt{2}=\left(\sqrt{2}+1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{2}+1\)

Vậy \(B=\sqrt{2}+1-1=\sqrt{2}\)

a) Ta có: \(B=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào B, ta được:

\(B=\sqrt{2}+1-1=\sqrt{2}\)

10 tháng 12 2017

\(a,B=3-2x+\sqrt{1+4x+4x^2}\\ =3-2x+\sqrt{\left(2x+1\right)^2}\\ =3-2x+2x+1\\ =4\)

\(b,\) Thay \(x=2015\) ta có:

\(B=4\)

10 tháng 12 2017

a, B=3-2x+\(\sqrt{4x^2+4x+1}\) =3-2x+\(\sqrt{\left(2x+1\right)^2}\) =3-2x+2x+1=4 b; Ta co B=4=4+0x thay x=2015 =>B=4+0x=4+0.2015=4 vay x=2015=>B=4

a)\(A=2x+\sqrt{1-4x+4x^2}\)

\(A=2x+\sqrt{\left(1-2x\right)^2}\)

\(A=2x+\left|1-2x\right|\)

\(A=2x+\left|2x-1\right|\)

\(A=4x-1\)

b)\(x=\frac{1}{4}\Leftrightarrow A=4.\frac{1}{4}-1\)

\(\Leftrightarrow A=-1\)

26 tháng 7 2018

a) \(A=2x+\sqrt{1-4x+4x^2}\)

\(A=2x+\sqrt{\left(1-2x\right)^2}\)

\(A=2x+|1-2x|\)

\(A=2x+|2x-1|\)

\(A=4x-1\)

b) \(x=\frac{1}{4}\Leftrightarrow A=4.\frac{1}{4}-1\)

\(\Leftrightarrow A=-1\)

5 tháng 9 2018

giải giúp em với mấy anh chị

5 tháng 7 2021

\(A=\dfrac{2}{x-1}\sqrt{\dfrac{\left(x-1\right)^2}{4x^2}}=\dfrac{2}{x-1}\left|\dfrac{x-1}{2x}\right|=\dfrac{\left|x-1\right|}{\left(x-1\right)\left|x\right|}\)

\(B=\left(x^2-4\right)\sqrt{\dfrac{9}{x^2-4x+4}}=\dfrac{3\left(x^2-4\right)}{\left|x-2\right|}\)

a) Ta có: \(A=\dfrac{2}{x-1}\cdot\sqrt{\dfrac{x^2-2x+1}{4x^2}}\)

\(=\dfrac{2}{x-1}\cdot\dfrac{x-1}{2x}\)

\(=\dfrac{1}{x}\)

b) Ta có: \(\left(x^2-4\right)\cdot\sqrt{\dfrac{9}{x^2-4x+4}}\)

\(=\dfrac{\left(x-2\right)\left(x+2\right)\cdot3}{\left(x-2\right)^2}\)

\(=\dfrac{3x+6}{x-2}\)

\(A=\left(\frac{\sqrt{x}-4x}{1-4x}-1\right):\left(\frac{1+2x}{1-4x}-\frac{2\sqrt{x}}{1-4x}-\frac{2\sqrt{x}}{2\sqrt{x}-1}-1\right)\)

\(=\left(\frac{\sqrt{x}-4x-1+4x}{1-4x}\right):\left(\frac{1+2x-2\sqrt{x}-2\sqrt{x}\left(2\sqrt{x}+1\right)-1+4x}{1-4x}\right)\)

\(=\frac{\sqrt{x}-1}{1-4x}:\frac{2x-4\sqrt{x}}{1-4x}=\frac{\sqrt{x}-1}{1-4x}.\frac{1-4x}{2\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{1}{2\sqrt{x}}\)

b, \(A>A^2\Rightarrow\frac{1}{2\sqrt{x}}>\left(\frac{1}{2\sqrt{x}}\right)^2\Rightarrow\frac{1}{2\sqrt{x}}>\frac{1}{4x}\Rightarrow\frac{1}{2\sqrt{x}}-\frac{1}{4x}>0\Rightarrow\frac{2\sqrt{x}-1}{4x}>0\)

\(2\sqrt{x}-1>0\);\(4x>0\)

\(\Rightarrow x>0\)thì \(A>A^2\)