K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2018

Bạn ơi vậy đề bài là gì vậy bạn?

Đặt \(A=2^{49}+2^{48}+...+2^2+2\)

\(\Leftrightarrow2A=2^{50}+2^{49}+...+2^3+2^2\)

\(\Leftrightarrow A=2^{50}-2\)

\(B=2^{50}-A=2^{50}-2^{50}+2=2\)

7 tháng 11 2021

250-249-248-..........-22-2

=2.(150-149-................-12-1)

=2.(-50)

=-100

 

7 tháng 11 2021

\(B=2^{50}-2^{49}-2^{48}-2^{47}-...-2^2-2\)

Đặt \(A=2^{49}+2^{48}+...+2\)

\(\Rightarrow2A=2^{50}+2^{49}+...+2^2\)

\(\Rightarrow A=2A-A=2^{50}+2^{49}+...+2^2-2^{49}-2^{48}-...-2=2^{50}-2\)

\(\Rightarrow B=2^{50}-A=2^{50}-2^{50}+2=2\)

11 tháng 5 2022

banhoeohoyeugianroi

12 tháng 3 2017

Hỏi đáp Toán

14 tháng 5 2015

P = 1/49+2/48+3/47+...+48/2+49/1

Cộng 1 váo mỗi p/s trong 48 p/s đầu , trừ p/s cuối đi 48 ta đượ

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50

Đưa ps cuối lên đầu

P=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50.S

VậyS/P=1/50
 

14 tháng 4 2017

1/50

 chúc bạn học tốt :-)))

26 tháng 1 2023

So sánh tổng : S = 1/5 + 1/9 + 1/10 + 1/41 + 1/42 với 1/2

26 tháng 1 2023

S=

=50/50+50/49+50/48+...+50/2

=50.(1/50+1/49+1/48+...+1/4+1/3+1/2)

=50

P=

P=(1/49+1)+(2/48+1)+...+(48/2+1)+1

P= 50/49+50/48+....+50/2+50/50=1

vậy s/p = 1/50

11 tháng 5 2022

​cho P=1/2+1/3+1/4+...........+1/48+1/49+1/50 và Q=1/49+2/48+3/47+........+47/3+48/2+49/1bucminh

17 tháng 8 2023

\(S=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{50}\)

\(\Rightarrow S=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}...+\dfrac{1}{49}-\dfrac{1}{50}\)

\(\Rightarrow S=1-\dfrac{1}{50}\)

\(\Rightarrow S=\dfrac{49}{50}\)

Phần P bạn xem lại đề

20 tháng 5 2017

Q = \(\frac{1}{49}+\frac{2}{48}+\frac{3}{47}+...+\frac{48}{2}+\frac{49}{1}\)

Cộng 1 vào mỗi phân số trong 48 phân số đầu, trừ phân số cuối đi 48, ta được :

Q = \(\left(\frac{1}{49}+1\right)+\left(\frac{2}{48}+1\right)+\left(\frac{3}{47}+1\right)+...+\left(\frac{48}{2}+1\right)+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+1\)

Q = \(\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}+\frac{50}{50}\)

đưa phân số cuối lên đầu :

Q = \(\frac{50}{50}+\frac{50}{49}+\frac{50}{48}+\frac{50}{47}+...+\frac{50}{2}\)

Q = \(50.\left(\frac{1}{50}+\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+...+\frac{1}{2}\right)\)

Q = 50 . A

Vậy \(\frac{P}{Q}=\frac{1}{50}\)