K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2016

Ta có : 2003 lẻ => 2003^3002 (1)

Ta lại có : 3004 chẵn => 3004^4003 chẵn (2)

Suy ra : B=2003^3002+3004^4003 kết hợp với (1) và (2) sẽ có tận cùng lẻ nên không chia hết cho 2

Vậy B không chia hết cho 2

a: a chia hết cho 3 vì 27 chia hết cho 3;81 chia hết cho 3 và 243 chia hết 3

b:B chia hết cho 5 vì 225 chia hết cho 5 và 110 chia hết cho 5

c: Các số chia hết cho cả 2,3,5 là 450

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

a) (20 + 81) \(\not{\vdots}\) 5 vì 20 \( \vdots \) 5 nhưng 81 \(\not{\vdots}\) 5

b) (34 + 28 - 12) \(\not{\vdots}\) 4 vì 28 \( \vdots \) 4, 12 \( \vdots \) 4 nhưng 34 \(\not{\vdots}\) 4.

HQ
Hà Quang Minh
Giáo viên
2 tháng 10 2023

a) 24 + 48\( \vdots \) 4 vì 24\( \vdots \) 4 và 48 \( \vdots \) 4

b) 48 + 12 - 36 \( \vdots \) 6 vì 48 c\( \vdots \) 6; 12 \( \vdots \) 6 và 36 \( \vdots \) 6

21 tháng 10 2023

Bài 4:

a chia 11 dư 5 dạng tổng quát của a là:

\(a=11k+5\left(k\in N\right)\)

b chia 11 dư 6 dạng tổng quát của b là:
\(b=11k+6\left(k\in N\right)\)

Nên: \(a+b\)

\(=11k+5+11k+6\)

\(=\left(11k+11k\right)+\left(5+6\right)\)

\(=k\cdot\left(11+11\right)+11\)

\(=22k+11\)

\(=11\cdot\left(2k+1\right)\)

Mà: \(11\cdot\left(2k+1\right)\) ⋮ 11

\(\Rightarrow a+b\) ⋮ 11 

21 tháng 10 2023

Bài 1: Mình làm rồi nhé !

Bài 2:

a) Dạng tổng quát của A là:

\(a=36k+24\left(k\in N\right)\)

b) a chia hết cho 6 vì: 

Ta có: \(36k\) ⋮ 6 và 24 ⋮ 6

\(\Rightarrow a=36k+24\) ⋮ 6

c) a không chia hết cho 9 vì:

Ta có: \(36k\) ⋮ 9 và 24 không chia hết cho 9 

\(\Rightarrow a=36k+24\) không chia hết cho 9 

14 tháng 10 2018

a, \(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=\left[3\left(1+3\right)\right]+\left[3^3\left(1+3\right)\right]+...+\left[3^{99}\left(1+3\right)\right]\)

\(=3\cdot4+3^3\cdot4+....+3^{99}\cdot4\)

\(=4\left(3+3^3+...+3^{99}\right)\)

\(\Rightarrow B⋮4\)

b, Vì 3 chia hết cho 3

3chia hết cho 3

.

.

.

3100 chia hết cho 3

\(\Rightarrow B⋮3\)

c,\(B=3+3^2+3^3+3^4+....+3^{99}+3^{100}\)

\(=\left(3+3^2\right)+\left(3^3+2^4\right)+....+\left(3^{99}+3^{100}\right)\)

\(=12+\left[3^2\left(3+3^2\right)\right]+....+\left[3^{97}\left(3+3^2\right)\right]\)

\(=12+3^2\cdot12+....+3^{97}\cdot12\)

\(=12\left(1+3^2+...+3^{97}\right)\)

\(\Rightarrow B⋮12\)

2 tháng 8 2021

Bài 1

a) 120⋮12, 36⋮12

⇒120+36⋮12

b) 120a⋮12, 36b⋮12

⇒120a+36b⋮12

2 tháng 8 2021

thiếu bài 2, 3 đâu