K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\left(\sqrt{14}+\sqrt{6}\right)\left(\sqrt{5}-\sqrt{21}\right)\)

\(=\sqrt{70}-7\sqrt{6}+\sqrt{30}-3\sqrt{14}\)

 

10 tháng 7 2021

em cảm ơn ạ vui

nhưng sao ko làm hết cả bài cho em ạ ????ngaingung

19 tháng 5 2017

chỉ biết cách làm mấy dạng căn trong căn như vầy là phá từ căn nhỏ nhất lên bằng cách phân tích biểu thức trong căn đó thành dạng bình phương 1 số.

\(\sqrt{53-20\sqrt{4+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(8+2\cdot2\sqrt{2}+1\right)}}}\)

\(=\sqrt{53-20\sqrt{4+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{53-20\sqrt{4+\left|2\sqrt{2}+1\right|}}\)

\(=\sqrt{53-20\sqrt{5+2\sqrt{2}}}\)

= { \(5+2\sqrt{2}\) bằng bao nhiêu bình phương không biết => không làm được, hóng người trả lời câu này cả buổi để tham khảo, nhưng chả thấy ai hết, khả năng của t chỉ được thế thôi , xin lỗi nhé}

20 tháng 5 2017

Bài này chắc g.viên dạy của tớ cho sai đề bạn ạ:))...Dù sao cũng cảm ơn bạn nhiều ạ:)))ok

3 tháng 8 2017

a) \(\sqrt{36-6\times2\sqrt{5}+5-5}\)

=\(\sqrt{\left(6-\sqrt{5}\right)^2-5}\)=\(\sqrt{\left(6-\sqrt{5}-\sqrt{5}\right)\left(6-\sqrt{5}+\sqrt{5}\right)}\)

=\(\sqrt{\left(5-2\sqrt{5}+1\right)\times6}\)

=\(\sqrt{\left(\sqrt{5}-1\right)^2\times6}\)

=(\(\sqrt{5}-1\))\(\times\)\(\sqrt{6}\)

Câu b muộn rùi nghỉ đây bạn tự nghĩ đi dễ mà

4 tháng 8 2017

Mk bt lm hết rùi nhưng dù sao cũng cảm ơn nha ><

12 tháng 7 2017

1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)

\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)

\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)

\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)

\(=\sqrt{4}=2\)

12 tháng 7 2017

1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)

\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)

\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)

\(=\sqrt{25}=5\)

5 tháng 8 2017

a) \(\sqrt{x-3}\) xác định

\(\Leftrightarrow x-3\ge0\)

\(\Leftrightarrow x\ge3\)

Vậy..

b) \(\sqrt{3-2x}\) xác định

\(\Leftrightarrow3-2x\ge0\)

\(\Leftrightarrow x\le-\dfrac{3}{2}\)

Vậy..

c) \(\sqrt{4x^2-1}\) xác định

\(\Leftrightarrow4x^2-1\ge0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}2x-1\ge0\\2x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge\dfrac{1}{2}\\x\ge\dfrac{-1}{2}\end{matrix}\right.\)\(\Rightarrow x\ge\dfrac{1}{2}\)

\(\Rightarrow\left\{{}\begin{matrix}2x-1\le0\\2x+1\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\x\le\dfrac{-1}{2}\end{matrix}\right.\) \(\Rightarrow x\le\dfrac{-1}{2}\)

Vậy ...

d) \(\sqrt{3x^2+2}\) xác định

\(\Leftrightarrow3x^2+2\ge0\)

\(3x^2\ge0\)

\(\Rightarrow3x^2+2>0\)

Vậy...

e) \(\sqrt{2x^2+4x+5}\) xác định

\(\Leftrightarrow2x^2+4x+5\ge0\)

\(2x^2+4x\ge0\)

\(2x\left(x+2\right)\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}2x\ge0\\x+2\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-2\end{matrix}\right.\)\(\Rightarrow x\ge0\)

\(\Rightarrow\left\{{}\begin{matrix}2x\le0\\x+2\le0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x\le0\\x\le-2\end{matrix}\right.\)\(\Rightarrow x\le-2\)

\(\Rightarrow2x^2+4x+5>0\)

Vậy...

( Câu này không chắc lắm nha )

Bài 2: Tách sẵn ra cho bạn luôn nhé, không thì bạn nhấn máy tính ra cũng được :v

a) \(-\dfrac{7}{9}\sqrt{\left(-27\right)^2+6\sqrt{1}}\)

\(=-\dfrac{7}{9}\sqrt{\left(-3\right)^2.\left(-9\right)^2+6}\)

\(=\dfrac{-7}{9}\sqrt{735}\)

\(=\dfrac{-7}{9}\sqrt{49.15}\)

\(=\dfrac{-49\sqrt{15}}{9}\)

b) \(\sqrt{49}\sqrt{12^2}+\sqrt{256}:\sqrt{8^2}\)

\(=84+2=86\)

c)\(\sqrt{\left(\sqrt{3-1}\right)^2-\sqrt{\left(\sqrt{3+1}\right)^2}}\)

\(=\sqrt{2-2}\)

= 0

5 tháng 8 2017

không biết t đang hỏi gì nữa :v

11 tháng 8 2017

a/ \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}=\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\) \(=\sqrt{5}-\sqrt{3}-\sqrt{5}-\sqrt{3}=-2\sqrt{3}\).

b/ \(A=\sqrt{4+\sqrt{10+2\sqrt{5}}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}\Rightarrow A^2=8+2\sqrt{4^2-\left(\sqrt{10+2\sqrt{5}}\right)^2}=8+2\sqrt{6-2\sqrt{5}}\) \(=8+2\sqrt{\left(\sqrt{5}-1\right)^2}=8+2\sqrt{5}-2=6+2\sqrt{5}=\left(\sqrt{5}+1\right)^2\)

\(\Rightarrow A=\sqrt{5}+1\)

c/ \(B=\sqrt{4+\sqrt{15}}+\sqrt{4-\sqrt{15}}-2\sqrt{3-\sqrt{5}}\Rightarrow\sqrt{2}B=\sqrt{8+2\sqrt{15}}+\sqrt{8-2\sqrt{15}}-2\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}-2\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{3}-2\sqrt{5}+2=2\Rightarrow B=\sqrt{2}\)

13 tháng 5 2017

\(\sqrt{1-x-2x^2}=\sqrt{\left(1+x\right)\left(1-2x\right)}\le\dfrac{1+x-2x+1}{2}=\dfrac{-x+2}{2}\)

(AM-GM)

do đó \(A\le\dfrac{x}{2}+\dfrac{-x+2}{2}=1\)

Dấu = xảy ra khi 1+x=1-2x <=> x=0 (tmđk)

13 tháng 5 2017

u cha ông cx giỏi AM-GM z !!

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

30 tháng 9 2017

Rút gọn biểu thức chứa căn bậc hai

\(=\sqrt{2}\left(\dfrac{2+\sqrt{5}}{2+\sqrt{5}+1}+\dfrac{2-\sqrt{5}}{2-\sqrt{5}+1}\right)\)

\(=\sqrt{2}\left(\dfrac{\left(2+\sqrt{5}\right)\left(3-\sqrt{5}\right)+\left(2-\sqrt{5}\right)\left(3+\sqrt{5}\right)}{4}\right)\)

\(=\sqrt{2}\cdot\dfrac{6-2\sqrt{5}+3\sqrt{5}-5+6+2\sqrt{5}-3\sqrt{5}-5}{4}\)

\(=\sqrt{2}\cdot\dfrac{2}{4}=\dfrac{\sqrt{2}}{2}\)

6 tháng 6 2017

a) \(\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2\sqrt{6}+\left(\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}\right)^2-2\sqrt{6}+\left(\sqrt{2}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

\(=\sqrt{3}+\sqrt{2}-\left(\sqrt{3}-\sqrt{2}\right)=2\sqrt{2}\)

b) Tương tự

7 tháng 6 2017

b) \(\sqrt{7-2\sqrt{10}}\) - \(\sqrt{7+2\sqrt{10}}\)

= \(\sqrt{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}.\sqrt{2}+\left(\sqrt{2}\right)^2}\)

= \(\sqrt{\left(\sqrt{5}-\sqrt{2}\right)^2}\) - \(\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}\)

= \(\left(\sqrt{5}-\sqrt{2}\right)\) - \(\left(\sqrt{5}+\sqrt{2}\right)\)

= \(\sqrt{5}-\sqrt{2}-\sqrt{5}-\sqrt{2}\)

= \(-2\sqrt{2}\)