K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=a^6-1\)

29 tháng 8 2021

lm hết giúp mk vs

 

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

8 tháng 7 2016

đề bài của bài 1 là rút gọn

19 tháng 11 2018

a, \(\dfrac{x^2-x}{x-2}+\dfrac{4-3x}{x-2}\)

\(=\dfrac{x^2-x+4-3x}{x-2}=\dfrac{x^2-4x+4}{x-2}\)

19 tháng 11 2018

c) \(\dfrac{2}{x^2-9}+\dfrac{1}{x+3}\)

Ta có: \(\dfrac{1}{x+3}=\dfrac{1\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{x-3}{x^2-9}\)

\(\Rightarrow\dfrac{2}{x^2-9}+\dfrac{1}{x+3}=\dfrac{2}{x^2-9}+\dfrac{x-3}{x^2-9}=\dfrac{2+x-3}{x^2-9}=\dfrac{x-1}{x^2-9}\)

13 tháng 1 2018

minh giai phan d, nha bn :

x-a/b+c + x-b/c+a + x-c/a+b=3

=> (x-a/b+c - 1)+(x-b/a+c - 1 )+(x-c/a+b - 1) = 3-3=0

=>x-a-b-c/b+c + x-a-b-c/a+c + x-a-b-c/a+b =0

=>(x-a-b-c)(1/b+c + 1/a+c + 1/a+b )=0

Vi 1/b+c + 1/a+c + 1/a+b luon lon hon 0=>x-a-b-c=0

=>x=a+b+c

13 tháng 1 2018

g, x - a / b + c + x - b/ c+a + x - c/ a+b = 3x / a+b+c

2 tháng 9 2018

a) (x+2y)2=x2+4xy+4y2

b) (a-3b)2=a2- 6ab+9b2

2 tháng 9 2018

bài 1 : điền vào chỗ chấm để đk khẳng định đúng :

a) (.x..+2y...)2=x2+..4y.+4y2

b) (.a..-.3b..)2=a2-6ab+.9b2..

c) (.m..+.\(\frac{1}{2}\)..)2=.m2..+m+1/4

d) 25a2-..\(\frac{1}{4}b\).=(.5a..+1/2b)(..5a..-1/2b)

e)(.2x...+.1..)^2 = 4x^2 +.4x..+1

g)(2-x)(.4..+.2x..+.x2..)=8-x^3

h) 16a^2 - ..9. = (..4a.+3)(..4a.-3)

f)25 - ..30y.+9y^2=(..5.+...3y.)^2

14 tháng 11 2022

Bài 4:

a: \(=1-\left(x-y\right)^2\)

\(=\left(1-x+y\right)\left(1+x-y\right)\)

b: \(=a^2-2ab+b^2-c^2+2cd-d^2\)

\(=\left(a-b\right)^2-\left(c-d\right)^2\)

\(=\left(a-b-c+d\right)\left(a-b+c-d\right)\)

d: \(=x^2\left(x^6-64\right)\)

\(=x^2\left(x-2\right)\left(x+2\right)\left(x^2+2x+4\right)\left(x^2-2x+4\right)\)

3 tháng 10 2017

Phân tích đa thức thành nhân tử:

a, \(36a^2-\left(a^2+9\right)^2\)

\(=\left(6a\right)^2-\left(a^2+9\right)^2\)

\(=\left(6a-a^2-9\right)\left(6a+a^2+9\right)\)

b, \(\left(a+3b\right)^2-\left(a^2+9\right)^2\)

\(=\left(a+3b-a^2-9\right)\left(a+3b+a^2+9\right)\)

c, \(9\left(2a-x\right)^2-4\left(3a-x\right)^2\)

\(=\left[3\left(2a-x\right)\right]^2-\left[2\left(3a-x\right)\right]^2\)

\(=\left(6a-3x\right)^2-\left(6a-2x\right)^2\)

\(=\left(6a-3x-6a+2x\right)\left(6a-3x+6a-2x\right)\)

\(=\left(-x\right)\left(12a-5x\right)\)

e, \(x^4+x^3+x+1\)

\(=\left(x^4+x^3\right)+\left(x+1\right)\)

\(=x^3\left(x+1\right)+\left(x+1\right)\)

\(=\left(x^3+1\right)\left(x+1\right)\)

3 tháng 10 2017

thank bạn nhiều nha !!!

31 tháng 7 2018

A=(a+1)(a+2)(a^2+4)(a-1)(a^2+1)(a-2)

A =(a+1)(a-1)(a+2)(a-2)(a^2+4)(a^2+1)

A =(a^2-1)(a^2+1)(a^2-4)(a^2+4)

A =(a^4-1)(a^4-16)

A =\(a^{16}-16\cdot a^4-a^4+16\)

A =\(a^{16}-17\cdot a^4+16\)

B=(a+2b-3c-d)(a+2b+3c+d)

B=[(a+2b)^2 - (3c +d)^2]

B=[a^2+4ab+4b^2-(9c^2+6cd+d^2)]

B=a^3+4ab+4b^2 - 9c^2 - 6cd - d^2

C=(1-x-2x^3+3x^2)(1-x+2x^3-3x^2)

C=[(1-x)^2-(2x^3-3x^2)^2]

C=[(1-2x+x^2) - (4x^6-12x^5+9x^4)]

C=[1-2x-x^2-4x^6+12x^5-9x^4]

C=-4x^6+12x^5-9x^4-x^2-2x+1

D=(a^6-3a^3+9)(a^3+3)

D=a^9+27