Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(DK:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+1\ne0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-1\end{matrix}\right.\)
\(< =>x\ge0\) ( Vì : \(\forall x\ge0=>\sqrt{x}\ge0\) )
\(B=\dfrac{1}{\sqrt{x}+1}\)
Biểu thức B xác định khi:
\(\left\{{}\begin{matrix}\sqrt{x}+1\ne0\\x\ge0\end{matrix}\right.\)
Mà: \(\sqrt{x}+1\ne0\) (luôn đúng) nên:
\(\Leftrightarrow x\ge0\)
Vậy: ...
\(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+14\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x\le4-\sqrt{2}\)
xác định \(< =>\left\{{}\begin{matrix}\sqrt{16-x^2}\ge0\\\sqrt{2x+1}>0\\\sqrt{x^2-8x+14}\ge0\end{matrix}\right.\)
\(< =>\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4_{ }+\sqrt{2}\end{matrix}\right.\\\end{matrix}\right.\)\(< =>-\dfrac{1}{2}< x\le4-\sqrt{2}\)
ĐKXĐ:
1 - x² ≥ 0 và x - 1 ≥ 0
⇔ x² ≤ 1 và x ≥ 1
⇔ -1 ≤ x ≤ 1 và x ≥ 1
⇔ x = 1
a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)
mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)
Dễ thấy không có số nào tương thích với x
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)