K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2023

28 tháng 10 2023

DT
28 tháng 10 2023

\(DK:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}+1\ne0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne-1\end{matrix}\right.\) 

\(< =>x\ge0\) ( Vì : \(\forall x\ge0=>\sqrt{x}\ge0\) )

28 tháng 10 2023

\(B=\dfrac{1}{\sqrt{x}+1}\)

Biểu thức B xác định khi:

\(\left\{{}\begin{matrix}\sqrt{x}+1\ne0\\x\ge0\end{matrix}\right.\)

Mà: \(\sqrt{x}+1\ne0\) (luôn đúng) nên:

\(\Leftrightarrow x\ge0\)

Vậy: ... 

2 tháng 8 2021

\(\left\{{}\begin{matrix}16-x^2\ge0\\2x+1>0\\x^2-8x+14\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow-\dfrac{1}{2}< x\le4-\sqrt{2}\)

2 tháng 8 2021

xác định \(< =>\left\{{}\begin{matrix}\sqrt{16-x^2}\ge0\\\sqrt{2x+1}>0\\\sqrt{x^2-8x+14}\ge0\end{matrix}\right.\)

\(< =>\left\{{}\begin{matrix}-4\le x\le4\\x>-\dfrac{1}{2}\\\left[{}\begin{matrix}x\le4-\sqrt{2}\\x\ge4_{ }+\sqrt{2}\end{matrix}\right.\\\end{matrix}\right.\)\(< =>-\dfrac{1}{2}< x\le4-\sqrt{2}\)

29 tháng 10 2023

ĐKXĐ:

1 - x² ≥ 0 và x - 1 ≥ 0

⇔ x² ≤ 1 và x ≥ 1

⇔ -1 ≤ x ≤ 1 và x ≥ 1

⇔ x = 1

29 tháng 10 2023

1−�2=�−1

⇔−�2+1=�2−2�+1

⇔2�2−2�=0

 

13 tháng 9 2021

a. không có ĐK, vì muốn a đc xác định cần \(\sqrt{x-9}\) và \(\sqrt{6-x}\) \(\ge0\)

mà điều kiện để \(\sqrt{x-9}\) và \(\sqrt{6-x}\ge0\) là \(9\le x\le6\)

Dễ thấy không có số nào tương thích với x

21 tháng 6 2019

\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)

\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)

\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)

\(B=3-\sqrt{x}-\sqrt{x}+3-6\)

\(B=-2\sqrt{x}\)

21 tháng 6 2019

\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)

\(=\frac{3}{\sqrt{x}-6}\)

6 tháng 9 2017

\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{2\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-2\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}-1}{\sqrt{x}}\)