Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
Bài `1:`
`a)3x^3+6x^2=3x^2(x+2)`
`b)x^2-y^2-2x+2y=(x-y)(x+y)-2(x-y)=(x-y)(x+y-2)`
Bài `2:`
`a)(2x-1)^2-25=0`
`<=>(2x-1-5)(2x-1+5)=0`
`<=>(2x-6)(2x+4)=0`
`<=>[(x=3),(x=-2):}`
`b)Q.(x^2+3x+1)=x^3+2x^2-2x-1`
`<=>Q=[x^3+2x^2-2x-1]/[x^2+3x+1]`
`<=>Q=[x^3-x^2+3x^2-3x+x-1]/[x^2+3x+1]`
`<=>Q=[(x-1)(x^2+3x+1)]/[x^2+3x+1]=x-1`
\(3\left(x-1\right)^2-3x\left(2-5\right)=21\)
\(\Leftrightarrow3x^2-6x+3+9x-21=0\)
\(\Leftrightarrow3x^2+3x-18=0\)
\(\Leftrightarrow3\left(x^2+x-6\right)=0\)
\(\Leftrightarrow3\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)
Vậy \(S=\left\{2;-3\right\}\)
a,\(A=\left(\frac{2x-x^2}{2\left(x^2+4\right)}-\frac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\left(\frac{2x+x^2\left(1-x\right)}{x^3}\right)\left(ĐKXĐ:x\ne2;x\ne0\right)\)
\(A=\frac{\left(2x-x^2\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}.\frac{-x^3+x^2+2x}{x^3}\)
\(=\frac{-x^3-4x}{2\left(x^2+4\right)\left(x-2\right)}.\frac{x^2-x-2}{-x^2}\)
\(=\frac{-x\left(x^2+4\right)}{2\left(x^2+4\right)\left(x-2\right)}.\frac{\left(x-2\right)\left(x+1\right)}{-x^2}=\frac{x+1}{2x}\)
b, \(A=x\Leftrightarrow\frac{x+1}{2x}=x\Rightarrow2x^2=x+1\Leftrightarrow2x^2-x-1=0\)
\(\Leftrightarrow\left(2x+1\right)\left(x-1\right)=0\Leftrightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=1\end{cases}}\)(thỏa mãn điều kiện)
c, \(A\in Z\Leftrightarrow\frac{x+1}{2x}\in Z\Leftrightarrow x+1⋮\left(2x\right)\)
\(\Leftrightarrow2x+2⋮2x\Leftrightarrow2⋮2x\Leftrightarrow1⋮x\Leftrightarrow x=\pm1\) (thỏa mãn ĐKXĐ)
1/
\(3^{x+2}-3^x=216\)
<=> \(3^x\left(9-1\right)=216\)
<=> \(3^x.8=216\)
<=> \(3^x=27\)
<=> \(x=3\)
2/
\(A=2\left(x-1\right)^2+y^2+2018\)
Ta có \(\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x-1=0\)<=> \(x=1\)
=> \(2\left(x-1\right)^2\ge0\)với mọi giá trị của x. Dấu "=" xảy ra khi và chỉ khi \(x=1\)
và \(y^2\ge0\)với mọi giá trị của y. Dấu "=" xảy ra khi và chỉ khi \(y=0\)
=> \(2\left(x-1\right)^2+y^2\ge0\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
=> \(2\left(x-1\right)^2+y^2+2018\ge2018\)với mọi cặp giá trị của (x; y). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
Vậy GTNN của A là 2018 khi \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
\(B=\frac{-2}{\left(x+1\right)^2+2019}\)
Ta có \(\left(x+1\right)^2\ge0\). Dấu "=" xảy ra khi và chỉ khi \(x+1=0\)<=> \(x=-1\)
=> \(\left(x+1\right)^2+2019\ge2019\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
=> \(\frac{-2}{\left(x+1\right)^2+2019}\ge\frac{-2}{2019}\). Dấu "=" xảy ra khi và chỉ khi \(x=-1\)
Vậy GTNN của B là \(-\frac{2}{2019}\)khi \(x=-1\)
Bài 1 : Tìm x :
3^x+2 - 3^x = 216
<=> 3^x . 3^2 - 3^x . 1 = 216
<=> 3^x . 9 - 3^x . 1 = 216
<=> 3^x . ( 9 - 1 ) = 216
<=> 3^x . 8 = 216
<=> 3^x = 216 : 8
<=> 3^x = 27
<=> 3^x = 3^3
=> x = 3
Vậy x = 3