\(\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right).\frac{a-\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2018

B ơi b lấy đề này ở đâu v ạ

26 tháng 5 2018

xin 1 tích và t sẽ làm " đúng 100% 

26 tháng 5 2018

ok b ơi b làm nhanh hộ mình với mình đang cần gấp

2 tháng 8 2019

\(1+\left(\frac{a+2\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\cdot\frac{a-\sqrt{a}}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(\sqrt{a}-1\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}+a\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}+a\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)}{\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}}{\left(1-\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\left(\frac{\left(1-\sqrt{a}\right)^2}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}-\frac{\sqrt{a}\left(1+\sqrt{a}\right)}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\right)\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}+a-\sqrt{a}-a}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(\sqrt{a}-1\right)}{2\sqrt{a}-1}\)

\(=1+\frac{1-2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}\cdot\frac{\sqrt{a}\left(1-\sqrt{a}\right)}{1-2\sqrt{a}}\)

\(=1+\frac{\sqrt{a}}{\left(1+\sqrt{a}\right)}\)

\(=\frac{1+\sqrt{a}+\sqrt{a}}{1+\sqrt{a}}\)

\(=\frac{1+2\sqrt{a}}{1+\sqrt{a}}\)

1 tháng 9 2016

a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\left(ĐK:a>0;a\ne1;a\ne4\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\cdot\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

b) Để \(A>\frac{1}{6}\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}-2}{3\sqrt{a}}-\frac{1}{6}>0\)

\(\Leftrightarrow\)\(\frac{2\sqrt{a}-4-\sqrt{a}}{6\sqrt{a}}>0\)

\(\Leftrightarrow\)\(\frac{\sqrt{a}-4}{6\sqrt{a}}>0\)

\(\Leftrightarrow\sqrt{a}-4>0\Leftrightarrow a>16\left(tm\right)\)

Vậy a>16 thì \(A>\frac{1}{6}\)

1 tháng 9 2016

ĐKXĐ : \(a>0,a\ne4,a\ne1\)

a) \(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)

\(=\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left(\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}\right)\)

\(=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}-2\right)}{3}=\frac{\sqrt{a}-2}{3\sqrt{a}}\)

b) \(A>\frac{1}{6}\Rightarrow\frac{\sqrt{a}-2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow-\frac{2}{3\sqrt{a}}+\frac{1}{3}>\frac{1}{6}\Rightarrow\frac{2}{3\sqrt{a}}>\frac{1}{6}\Rightarrow\frac{1}{\sqrt{a}}>\frac{1}{4}\Rightarrow a< 16\)

Kết hợp với điều kiện xác định.