Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đúng
b)Đúng
c)Sai vì nghiệm không thỏa mãn ĐKXĐ
d)Sai vì có 1 nghiệm không thỏa mãn ĐKXĐ
a) 4x -8 ≥ 3(3x-1)-2x +1
⇒4x -8 ≥7x -2
⇒4x -7x ≥ -2 +8
⇒-3x ≥ 6
⇒x≤-2
Vậy bpt có nghiệm là:{x|x≤-2}
b) (x-3)(x+2)+(x+4)2≤ 2x (x+5)+4
⇔ x2+2x - 3x - 6 +x2 + 8x +16≤ 2x2 + 10x +4
⇔ x2 +2x - 3x + x2 + 8x - 2x2- 10x ≤ 4+6-16
⇔ -3x ≤ -6
⇔ x≥ 2
Vậy bpt có tập nghiệm là: {x|x≥2}
a: \(\Leftrightarrow x^3-3x^2+3x-1-x^3+2x^2-x=5x\left(2-x\right)-11\left(x+2\right)\)
=>-x^2+2x-1=10x-5x^2-11x-22
=>-x^2+2x-1=-5x^2-x-22
=>4x^2+3x+21=0
=>PTVN
b: \(\Leftrightarrow\left(x+10\right)\left(x+4\right)+3\left(x+4\right)\left(x-2\right)=4\left(x+10\right)\left(x-2\right)\)
=>x^2+14x+40+3(x^2+2x-8)=4(x^2+8x-20)
=>x^2+14x+40+3x^2+6x-24=4x^2+32x-80
=>20x+16=32x-80
=>-12x=-96
=>x=8
c: \(\Leftrightarrow6\left(x-3\right)+7\left(x-5\right)=13x+4\)
=>6x-18+7x-35=13x+4
=>-53=4(loại)
d: =>3(2x-1)-5(x-2)=3(x+7)
=>6x-3-5x+10=3x+21
=>3x+21=x+7
=>x=-7
e: =>x^3-6x^2+12x-8-x^3-3x^2-3x-1=-9x^2+1
=>-9x^2+9x-9=-9x^2+1
=>9x=10
=>x=10/9
Vì số lượng bài khá nhiều và mình cũng không có quá nhiều thời gian nên không tránh khỏi sai sót, nếu phát hiện mong bạn thông cảm! Bài của tớ làm khá tắt bước, chỉ nên tham khảo. Bạn có thể tự biểu diễn tập nghiệm được không?
a. \(x+8>3x-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b. \(3x-\left(2x+5\right)\le\left(2x-3\right)\)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow-x\le2\)
\(\Leftrightarrow x\ge2\)
c. \(\left(x-3\right)\left(x+3\right)< x\left(x+2\right)+3\)
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow2x>-12\Leftrightarrow x>-6\)
d. \(2\left(3x-1\right)-2x< 2x+1\)
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow2x< 3\)
\(\Leftrightarrow x< \frac{3}{2}\)
e. \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow3\left(3-2x\right)>5\left(2-x\right)\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-x>1\) \(\Leftrightarrow x< -1\)
f. \(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\Leftrightarrow x\ge0\)
g. \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow2x+2>2x-1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h. \(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-25\)
\(\Leftrightarrow x>-\frac{25}{2}\)
i. \(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow x+5-4x-2\le3x+9\)
\(\Leftrightarrow-6x\le6\)
\(\Leftrightarrow x\ge-1\)
j. \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow10x+8-2x+1\ge48\)
\(\Leftrightarrow8x\ge39\)
\(\Leftrightarrow x\ge\frac{39}{8}\)
Bạn tự biểu diễn nghiệm trên trục số nhé!
a) \(x+8>3x-1\)
\(\Leftrightarrow x-3x>-8-1\)
\(\Leftrightarrow-2x>-9\)
\(\Leftrightarrow x< \frac{9}{2}\)
b) 3x − (2x+5) ≤ (2x−3)
\(\Leftrightarrow3x-2x-5\le2x-3\)
\(\Leftrightarrow3x-2x+2x\le5-3\)
\(\Leftrightarrow3x\le2\)
\(\Leftrightarrow x\le\frac{2}{3}\)
c) (x − 3) (x + 3) < x (x + 2) + 3
\(\Leftrightarrow x^2-9< x^2+2x+3\)
\(\Leftrightarrow x^2-x^2+2x< 9+3\)
\(\Leftrightarrow2x< 12\)
\(\Leftrightarrow x< 6\)
d) 2 (3x − 1) − 2x < 2x + 1
\(\Leftrightarrow6x-2-2x< 2x+1\)
\(\Leftrightarrow6x-2x+2x< 2+1\)
\(\Leftrightarrow6x< 3\)
\(\Leftrightarrow x< \frac{3}{6}\)
e) \(\frac{3-2x}{5}>\frac{2-x}{3}\)
\(\Leftrightarrow\frac{\left(3-2x\right)\times3}{15}>\frac{\left(2-x\right)\times5}{15}\)
\(\Leftrightarrow9-6x>10-5x\)
\(\Leftrightarrow-6x+5x>-9+10\)
\(\Leftrightarrow-x>1\)
\(\Leftrightarrow x< -1\)
f)\(\frac{x-2}{6}-\frac{x-1}{3}\le\frac{x}{2}\)
\(\Leftrightarrow x-2-2\left(x-1\right)\le3x\)
\(\Leftrightarrow x-2-2x+2\le3x\)
\(\Leftrightarrow-4x\le0\)
\(\Leftrightarrow x\ge0\)
g) \(\frac{x+1}{3}>\frac{2x-1}{6}\ge4\)
\(\Leftrightarrow\frac{\left(x+1\right)\cdot2}{6}>\frac{2x-1}{6}\ge\frac{4\cdot6}{6}\)
\(\Leftrightarrow2x+2>2x+1\ge24\)
\(\Leftrightarrow2x+2>2x\ge25\)
\(\Leftrightarrow x\ge\frac{25}{2}\)
h)\(1+\frac{2x+1}{3}>\frac{2x-1}{6}-2\)
\(\Leftrightarrow\frac{1}{6}+\frac{\left(2x+1\right)\cdot2}{6}>\frac{2x-1}{6}-\frac{2\cdot6}{6}\)
\(\Leftrightarrow6+4x+2>2x-1-12\)
\(\Leftrightarrow2x>-21\)
\(\Leftrightarrow x>\frac{-21}{2}\)
i)\(\frac{x+5}{6}-\frac{2x+1}{3}\le\frac{x+3}{2}\)
\(\Leftrightarrow\frac{x+5}{6}-\frac{\left(2x+1\right)\cdot2}{6}\le\frac{\left(x+3\right)\cdot3}{6}\)
\(\Leftrightarrow x+5-4x+2\le3x+9\)
\(\Leftrightarrow-3x-x+4x\le9-5-2\)
\(\Leftrightarrow x\le2\)
j) \(\frac{5x+4}{6}-\frac{2x-1}{12}\ge4\)
\(\Leftrightarrow\frac{\left(5x+4\right)\cdot2}{12}-\frac{2x-1}{12}\ge\frac{4\cdot12}{12}\)
\(\Leftrightarrow10x+8-2x-1\ge48\)
\(\Leftrightarrow10x-2x\ge48-8+1\)
\(\Leftrightarrow8x\ge41\)
\(\Leftrightarrow x\ge\frac{41}{8}\)
Mình không chắc là mình làm đúng đâu. Nhưng có sai sót gì thì cứ nói cho mình biết. Chúc bạn học tốt ^-^
a: \(=6x^4-9x^3+3x^2-4x^3+6x^2-2x+10x^2-15x+5\)
\(=6x^4-13x^3+19x^2-17x+5\)
b: \(=6x^4-\dfrac{9}{4}x^3-\dfrac{9}{2}x^2-\dfrac{8}{3}x^3+x^2+2x-\dfrac{20}{3}x^2+\dfrac{5}{2}x+5\)
\(=6x^4-\dfrac{59}{12}x^3-\dfrac{67}{6}x^2+\dfrac{9}{2}x+5\)
c: \(=3x^4-\dfrac{9}{8}x^3-\dfrac{3}{4}x^2+8x^3-3x^2-6x-\dfrac{4}{3}x^2+\dfrac{1}{2}x+1\)
\(=3x^4-\dfrac{55}{8}x^3-\dfrac{25}{12}x^2-\dfrac{11}{2}x+1\)
a)
Đặt
\(\sqrt{1+x}=a; \sqrt{1-x}=b\Rightarrow \left\{\begin{matrix} ab=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}\\ a\geq b\\ a^2+b^2=2\end{matrix}\right.\)
Khi đó:
\(A=\frac{\sqrt{1-\sqrt{1-x^2}}(\sqrt{(1+x)^3}+\sqrt{(1-x)^3})}{2-\sqrt{1-x^2}}\)
\(=\frac{\sqrt{\frac{a^2+b^2}{2}-ab}(a^3+b^3)}{a^2+b^2-ab}=\frac{\sqrt{\frac{a^2+b^2-2ab}{2}}(a+b)(a^2-ab+b^2)}{a^2+b^2-ab}\)
\(=\sqrt{\frac{a^2-2ab+b^2}{2}}(a+b)=\sqrt{\frac{(a-b)^2}{2}}(a+b)=\frac{1}{\sqrt{2}}|a-b|(a+b)\)
\(=\frac{1}{\sqrt{2}}(a-b)(a+b)=\frac{1}{\sqrt{2}}(a^2-b^2)=\frac{1}{\sqrt{2}}[(1+x)-(1-x)]=\sqrt{2}x\)
Sửa đề: \(\frac{25}{(x+z)^2}=\frac{16}{(z-y)(2x+y+z)}\)
Ta có:
Áp dụng tính chất dãy tỉ số bằng nhau thì:
\(k=\frac{a}{x+y}=\frac{5}{x+z}=\frac{a+5}{2x+y+z}=\frac{5-a}{z-y}\) ($k$ là một số biểu thị giá trị chung)
Khi đó:
\(\frac{16}{(z-y)(2x+y+z)}=\frac{25}{(x+z)^2}=(\frac{5}{x+z})^2=k^2\)
Mà: \(k^2=\frac{a+5}{2x+y+z}.\frac{5-a}{z-y}=\frac{25-a^2}{(2x+y+z)(z-y)}\)
Do đó: \(\frac{16}{(z-y)(2x+y+z)}=\frac{25-a^2}{(2x+y+z)(z-y)}\Rightarrow 16=25-a^2\)
\(\Rightarrow a^2=9\Rightarrow a=\pm 3\)
Suy ra:
\(Q=\frac{a^6-2a^5+a-2}{a^5+1}=\frac{a^5(a-2)+(a-2)}{a^5+1}=\frac{(a-2)(a^5+1)}{a^5+1}=a-2=\left[\begin{matrix}
1\\
-5\end{matrix}\right.\)
b: \(\Leftrightarrow\dfrac{7x+10}{x+1}\left(x^2-x-2-2x^2+3x+5\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(-x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(7x+10\right)\left(x^2-2x-3\right)=0\)
=>(7x+10)(x-3)=0
hay \(x\in\left\{-\dfrac{10}{7};3\right\}\)
d: \(\Leftrightarrow\dfrac{13}{2x^2+7x-6x-21}+\dfrac{1}{2x+7}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow\dfrac{13}{\left(2x+7\right)\left(x-3\right)}+\dfrac{1}{\left(2x+7\right)}-\dfrac{6}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Leftrightarrow26x+91+x^2-9-12x-14=0\)
\(\Leftrightarrow x^2+14x+68=0\)
hay \(x\in\varnothing\)
Bài 1 :
Ta có : \(\dfrac{3x+5}{2}-1\le\dfrac{x+2}{3}+x\)
\(\Leftrightarrow\dfrac{3x+5}{2}-1-\dfrac{x+2}{3}-x\le0\)
\(\Leftrightarrow\dfrac{3\left(3x+5\right)-6-2\left(x+2\right)-6x}{6}\le0\)
\(\Leftrightarrow9x+15-6-2x-4-6x\le0\)
\(\Leftrightarrow x\le-5\)
Mà \(\left\{{}\begin{matrix}x\in Z\\x>-10\end{matrix}\right.\)
Vậy \(x\in\left\{-5;-6;-7;-8;-9\right\}\)
b3\(\Leftrightarrow2x^2+5x-3-3x+1\le x^2+2x-3+x^2-5\\ \Leftrightarrow0.x\le-6\Leftrightarrow x\in\varnothing\)