K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2020

b) Vì \(\left|a\right|=\left|-a\right|\)\(\Rightarrow\)\(\left|x-2020\right|=\left|2020-x\right|\)

    Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)biểu thức P(x), ta có:

   \(\left|2020-x\right|+\left|x+2021\right|\ge\left|2020-x+x+2021\right|=4041\)

     \(\Rightarrow\)\(P\left(x\right)\ge4041\)

    Dấu "=" xảy ra khi và chỉ khi: \(\left(2020-x\right)\left(x+2021\right)>0\)

                                            \(\Leftrightarrow-2021< x< 2020\)

 Vậy \(P\left(x\right)_{min}=4041\)\(\Leftrightarrow\)\(-2021< x< 2020\)

6 tháng 9 2020

a,Thay x=1 là nghiệm của đa thức P(x)

Ta có:ax2+bx+c=0

          a.12+b.1+c=0

          a+b+c=0

=>x=1 là nghiệm của P(x)    (đpcm)

5 tháng 9 2020

Bị tự tin quá khả năng nhẩm mồm, sai em xin lỗi ...

a, Ta có \(P\left(x\right)=8x^3+2x^2-3x-3x^3+10-x-2x^2-3\)

\(=5x^3-4x-7\)

\(Q\left(x\right)=9x^3-4x^2+2x-3+2x+3x^2+4x^3-2\)

\(=13x^3-x^2+4x-5\)

b, Ta có : \(P\left(-\frac{1}{2}\right)=5.\left(-\frac{1}{2}\right)^3-4.\left(-\frac{1}{2}\right)-7=-\frac{45}{8}\)

c , \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\) 

  \(5x^3-4x-7+13x^3-x^2+4x-5=18x^3-x^2-12\)

\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)

\(5x^3-4x-7-13x^3+x^2-4x+5=-8x^3-8x-2+x^2\)

d, Đặt \(5x^3-4x-7=0\)( vô nghiệm )

6 tháng 6 2019

a) \(f\left(x\right)=8x^2-6x-2=0\)

\(\Leftrightarrow8x^2-8x+2x-2=0\)

\(\Leftrightarrow8x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(8x+2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}8x+2=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{4}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{-1}{4};1\right\}\)

6 tháng 6 2019

b) \(g\left(x\right)=5x^2-6x+1=0\)

\(\Leftrightarrow5x^2-5x-x+1=0\)

\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=1\end{cases}}\)

Vậy \(x\in\left\{\frac{1}{5};1\right\}\)

loading...  loading...  

loading...  loading...    

a) \(8x^3-18x^2+x+6\)

\(=8x^3-16x^2-2x^2+4x-3x+6\)

\(=8x^2\left(x-2\right)-2x\left(x-2\right)-3\left(x-2\right)\)

\(=\left(x-2\right)\left(8x^2-2x-3\right)\)

\(=\left(x-2\right)\left(8x^2-6x+4x-3\right)\)

\(=\left(x-2\right)\left[2x\left(4x-3\right)+\left(4x-3\right)\right]\)

\(=\left(x-2\right)\left(2x+1\right)\left(4x-3\right)\)

=> g(x) có 3 nghiệm là

x-2=0 <=> x=2

2x+1=0 <=> x=-1/2

4x-3=0 <=> x=3/4

vậy đa thức g(x) có nghiệm là x={2;-1/2;3/4}

b) tự làm đi (mk ko bt làm)

2 tháng 7 2015

bạn xem lại đề cho  f(x)

23 tháng 9 2018

mk chiu thua bn oi

23 tháng 9 2018

a) Ta có: a+b+c+d=0 
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0 
Vậy x=1 là một nghiệm của f(x) 
b) Ta có: a+c=b+d => -a+b-c+d=0 
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0 
Vậy x=-1 là một nghiệm của f(x)

7 tháng 3 2020

Do đa thức có nghiệm nên ta gọi k là một ngiệm của đa thức đó

Do P(x) là đa thức bậc ba nên \(P\left(x\right)=\left(x-k\right)\left(x^2+mx+n\right)\)

\(=x^3+mx^2+xn-kx^2-kmx-kn\)

\(=x^3+\left(m-k\right)x^2+\left(n-km\right)x-kn\)

Đồng nhất hệ số, ta được: \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)

Thay \(\hept{\begin{cases}m-k=a\\n-km=b\\-kn=c\end{cases}}\)vào hệ thức \(a+2b+4c=-\frac{1}{2}\),ta được:

\(\left(m-k\right)+2\left(n-km\right)-4kn=-\frac{1}{2}\)

\(\Leftrightarrow m-k+2n-2km-4kn=-\frac{1}{2}\)

\(\Leftrightarrow k\left(-1-2m-4n\right)+\left(m+2n\right)=-\frac{1}{2}\)

\(\Leftrightarrow2k\left(-1-2m-4n\right)+2\left(m+2n\right)=-1\)

\(\Leftrightarrow2k\left(-1-2m-4n\right)=\left(-1-2m-4n\right)\)

\(\Rightarrow2k=1\Rightarrow k=\frac{1}{2}\)

Vậy 1 nghiệm của đa thức là \(\frac{1}{2}\)