Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1. chứng tỏ rằng
a) 10100+5 chia hết cho cả 3 và 5
b) 1050+44 chia hết cho 2 và 9
2. tìm các chữ số a,b sao cho
a)45ab chia hết cho cả 2 và 3 còn chia cho 5 dư 3
b)12a3b chia hết cho 45
dài quá bn
các bn cho mik nha
cầu xin đó
1.a) Vì 10100 chia hết cho 5 và 5 chia hết cho 5 => \(10^{100}+5⋮5\left(đpcm\right)\)
10100 + 5 = 10.....0 + 5 = 10...05. Tổng các chữ số của số trên là:
1 + 0 +...+ 0 + 5 = 6.
Vì 6 chia hết cho 3 nên \(10^{100}+5⋮3\left(đpcm\right)\)
b) Vì 1050 chia hết cho 2 và 44 chia hết cho 2 nên \(10^{50}+44⋮2\left(đpcm\right)\)
1050 + 44 = 10....0 + 44 = 10..044. Tổng các chữ số của số trên là:
1 + 0 + ... + 0 + 4 + 4 = 9.
Vì 9 chia hết cho 9 nên \(10^{50}+44⋮9\left(đpcm\right)\)
2. a) 45ab (có gạch ngang trên đầu nha) chia hết cho 2 còn chia 5 dư 3 => b = 8.
45a8 chia hết cho 3 => 4 + 5 + a + 8 chia hết cho 3 => 17 + a chia hết cho 3 => a = {1;4;7}
b) 12a3b (có gạch ngang trên đầu) chia hết cho 45 => 12a3b chia hết cho 5 và 9. (vì 45 = 9.5)
=> b = 0 hoặc b = 5.
- Trường hợp 1: b = 0
Nếu b = 0 thì 1 + 2 + a + 3 + 0 chia hết cho 9 => 6 + a chia hết cho 9 => a = 3.
- Trường hợp 2: b = 5
Nếu b = 5 thì 1 + 2 + a + 3 + 5 chia hết cho 9 => 11 + a chia hết cho 9 => a = 7.
Vậy nếu b = 0 thì a = 3; nếu b = 5 thì a = 7.

1. Ta có: \(\left(x-y\right)⋮3\)
\(\Rightarrow\left[5\left(x-y\right)\right]⋮3\)
\(\Rightarrow\left[5x-5y\right]⋮3\)
\(\Rightarrow\left[5x-5y+12y\right]⋮3\)
\(\Rightarrow\left[5x+\left(12y-5y\right)\right]⋮3\)
\(\Rightarrow\left[5x+7y\right]⋮3\left(đpcm\right)\)
#)Giải :
\(x-y⋮3\Rightarrow x⋮3\Leftrightarrow y⋮3\)
Vì \(x⋮3\)và \(y⋮3\)\(\Rightarrow5x+7y⋮3\)( các số chia hết cho 3 luôn chia hết cho 3 trong trường hợp dù bị nhân lên, các số đó luôn chia hết cho 3 dù bị cộng vào )
#)Đó là ý kiến của mk :D, k bít đúng hay sai đâu nhá
#~Will~be~Pens

vì 39 chia hết cho 13 suy ra 39a chia hết cho 13
mà a+4b chia hết cho 13 nên 39a+a+ab chia hết cho 13
suy ra 40a+4b chia hết cho 13 nên 4(10a+b) chia hết cho 13 (1)
vì 4 ko chia hết cho 13 nên kết hợp với (1) ta có 10a+b chia hết cho 13
k cho mik nha

\(1+5+5^2+5^3+...+5^{101}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{100}+5^{101}\right)\)
\(=1+5+5^2\left(1+5\right)+5^4\left(1+5\right)+...+5^{100}\left(1+5\right)\)
\(=6+5^2.6+5^4.6+...+5^{100}.6\)
\(\Rightarrow6+6\left(5^2+5^4+5^6+...5^{100}\right)⋮6\)
\(\Rightarrow1+5+5^2+5^3+...+5^{101}⋮6\)
Ta sẽ giải từng ý một theo thứ tự từ a) đến h) với biểu thức:
\(B = 1 + 5 + 5^{2} + 5^{3} + \hdots + 5^{50}\)
a) Rút gọn B
Biểu thức B là tổng của cấp số nhân với:
Công thức tổng cấp số nhân:
\(B = \frac{q^{n} - 1}{q - 1} = \frac{5^{51} - 1}{5 - 1} = \frac{5^{51} - 1}{4}\)
✅ Vậy:
\(\boxed{B = \frac{5^{51} - 1}{4}}\)
b) Tìm x sao cho \(4 B + 1 = 125^{x} + 1\)
Ta có:
\(4 B + 1 = 4 \cdot \frac{5^{51} - 1}{4} + 1 = 5^{51}\)
Mà:
\(125^{x} = \left(\right. 5^{3} \left.\right)^{x} = 5^{3 x}\)
Vậy:
\(5^{3 x} + 1 = 5^{51} \Rightarrow 5^{3 x} = 5^{51} \Rightarrow 3 x = 51 \Rightarrow x = \boxed{17}\)
c) Chứng tỏ B chia hết cho 13
Ta có:
\(B = \frac{5^{51} - 1}{4}\)
Chứng minh \(B \backslash\text{divby} 13\) ⇔ \(5^{51} \equiv 1 \left(\right. m o d 13 \left.\right)\)
Bước 1: Tìm chu kỳ của \(5^{n} m o d \textrm{ } \textrm{ } 13\)
Tính \(5^{k} m o d \textrm{ } \textrm{ } 13\) cho đến khi chu kỳ lặp lại:
⟹ Chu kỳ: 4
⇒ \(5^{4} \equiv 1 \left(\right. m o d 13 \left.\right) \Rightarrow 5^{4 k} \equiv 1\)
Vì 51 chia 4 dư 3 ⇒ \(5^{51} \equiv 5^{3} = 8 ≢ 1\)
⛔ Nhưng ta cần chứng minh B chia hết cho 13, nên xem thử:
\(B = 1 + 5 + 5^{2} + \hdots + 5^{50} \left(\right. m o d 13 \left.\right)\)
Dùng tính chu kỳ mod 13 (chu kỳ 4):
Chu kỳ 5^n mod 13: \(\left[\right. 1 , 5 , 12 , 8 \left]\right.\)
→ Lặp lại sau mỗi 4 số
Số hạng: 51 ⇒ Có 12 chu kỳ đầy đủ (4×12 = 48) + 3 số dư
→ Tổng trong 1 chu kỳ: \(1 + 5 + 12 + 8 = 26 \equiv 0 m o d \textrm{ } \textrm{ } 13\)
→ Tổng 12 chu kỳ ≡ 0 mod 13
→ 3 số còn lại là \(5^{48} , 5^{49} , 5^{50}\)
→ Tổng 3 số: \(1 + 5 + 12 = 18 m o d \textrm{ } \textrm{ } 13 = 5\)
Vậy tổng B mod 13 = \(0 + 5 = 5\) ⇒ không chia hết
⛔ Sai ở bước đầu: Tổng B không chia hết cho 13
⟹ ✅ Vậy: B không chia hết cho 13
Sửa lại c): B không chia hết cho 13
d) Chứng tỏ B không chia hết cho 156. Tìm số dư khi B chia 156
Phân tích: \(156 = 2^{2} \cdot 3 \cdot 13 = 4 \cdot 3 \cdot 13\)
Ta đã biết:
⟹ Không chia hết cho 156
Giờ ta cần tìm:
\(B m o d \textrm{ } \textrm{ } 156\)
Ta tính \(B m o d \textrm{ } \textrm{ } 4\), \(B m o d \textrm{ } \textrm{ } 3\), và \(B m o d \textrm{ } \textrm{ } 13\), rồi dùng chinese remainder theorem (CRT) để tìm B mod 156
B mod 4:
Ta có:
→ B = 51 số hạng 1 ⇒ \(B \equiv 51 \equiv 3 m o d \textrm{ } \textrm{ } 4\)
B mod 3:
→ Dãy: \(1 + 2 + 4 + 2 + 1 + 2 + 4 + . . .\), chu kỳ 6
Tính chu kỳ:
Tổng 3: \(1 + 2 + 4 = 7 \equiv 1 m o d \textrm{ } \textrm{ } 3\)
→ Số hạng: 51 ⇒ có 17 chu kỳ
→ Tổng mod 3 = \(17 \times 7 = 119 \equiv 2 m o d \textrm{ } \textrm{ } 3\)
B mod 13: Từ trên, ta tính được:
Tóm lại:
Áp dụng hệ đồng dư (CRT):
Tìm \(x \equiv 3 m o d \textrm{ } \textrm{ } 4 , x \equiv 2 m o d \textrm{ } \textrm{ } 3 , x \equiv 5 m o d \textrm{ } \textrm{ } 13\)
Giải hệ đồng dư này (có thể dùng công cụ hoặc làm tay), ta được:
\(\boxed{B \equiv 131 m o d \textrm{ } \textrm{ } 156}\)
e) Chứng tỏ B chia hết cho 5
Ta có:
⇒ B không chia hết cho 5?
⛔ Nhầm. Hãy xem:
Ta viết lại B:
\(B = 1 + 5 + 5^{2} + \hdots + 5^{50}\)
Tất cả các số trừ số đầu là bội của 5
→ Tổng các số từ \(5^{1} \rightarrow 5^{50}\) là bội của 5
⇒ B ≡ 1 mod 5 ⇒ không chia hết cho 5
⛔ Vậy: B không chia hết cho 5
f) So sánh \(4 B\) và \(8^{39}\)
Biến đổi:
So sánh: \(5^{51} - 1\) và \(2^{117}\)
Lấy log cả 2 vế:
⇒ \(\left(log \right)_{10} \left(\right. 5^{51} \left.\right) > \left(log \right)_{10} \left(\right. 2^{117} \left.\right)\)
⟹ \(5^{51} > 2^{117} \Rightarrow 4 B + 1 > 8^{39}\)
⟹ \(\boxed{4 B > 8^{39}}\)
g) Tìm chữ số tận cùng của B
Ta cần \(B m o d \textrm{ } \textrm{ } 10\)
Gọi lại:
\(B = 1 + 5 + 5^{2} + . . . + 5^{50}\)
Chữ số tận cùng lặp theo chu kỳ:
Ta sẽ giải từng ý một cách rõ ràng và chặt chẽ.
Cho:
\(B = 1 + 5 + 5^{2} + \hdots + 5^{50}\)
Đây là cấp số nhân với:
a) Rút gọn B
Dùng công thức tổng cấp số nhân:
\(B = \frac{r^{n} - 1}{r - 1} = \frac{5^{51} - 1}{5 - 1} = \frac{5^{51} - 1}{4}\)
b) Tìm \(x\) sao cho \(4 B + 1 = 125^{x} + 1\)
Ta có:
\(4 B = 5^{51} - 1 \Rightarrow 4 B + 1 = 5^{51}\)
Mà:
\(125 = 5^{3} \Rightarrow 125^{x} = 5^{3 x}\)
Vậy để:
\(4 B + 1 = 5^{51} = 125^{x} = 5^{3 x} \Rightarrow 3 x = 51 \Rightarrow x = \boxed{17}\)
c) Chứng tỏ \(B\) chia hết cho 13
Ta biết:
\(B = \frac{5^{51} - 1}{4}\)
Chứng minh: \(B \equiv 0 \left(\right. m o d 13 \left.\right)\)
⇔ \(5^{51} - 1 \equiv 0 \left(\right. m o d 52 \left.\right)\)
Ta xét mod 13:
Chu kỳ của \(5^{k} m o d \textrm{ } \textrm{ } 13\):
k
\(5^{k} m o d \textrm{ } \textrm{ } 13\)5kmod 135^k \mod 13
1
5
2
12
3
8
4
1
→ Chu kỳ 4 ⇒ \(5^{4} \equiv 1 \left(\right. m o d 13 \left.\right)\)
⇒ \(5^{51} = \left(\right. 5^{4} \left.\right)^{12} \cdot 5^{3} \equiv 1^{12} \cdot 5^{3} = 125 \equiv 125 m o d \textrm{ } \textrm{ } 13\)
Tính: \(125 \div 13 = 9 \&\text{nbsp};\text{d}ư\&\text{nbsp}; 8 \Rightarrow 5^{51} \equiv 8 \left(\right. m o d 13 \left.\right)\)
→ \(5^{51} - 1 \equiv 7 \left(\right. m o d 13 \left.\right) \Rightarrow \boxed{B ≢ 0 \left(\right. m o d 13 \left.\right)}\)
👉 Vậy đề sai ở đây. Không chia hết cho 13.
✔️ Sửa lại ý c):
c) Chứng minh: B không chia hết cho 13
Đã chứng minh ở trên: \(5^{51} \equiv 8 \Rightarrow B \equiv \frac{8 - 1}{4} = \frac{7}{4} m o d \textrm{ } \textrm{ } 13\) không nguyên ⇒ không chia hết cho 13.
d) Chứng minh B không chia hết cho 156 và tìm số dư
Số \(156 = 2^{2} \cdot 3 \cdot 13\)
Ta xét chia hết cho từng thành phần:
Tính: \(5 \equiv 2 \left(\right. m o d 3 \left.\right)\), nên \(5^{k} \equiv 2^{k} \left(\right. m o d 3 \left.\right)\)
Mà \(2^{2} \equiv 1 m o d \textrm{ } \textrm{ } 3\), nên chu kỳ là 2:
\(2^{0} = 1\), \(2^{1} = 2\), \(2^{2} = 1\), \(2^{3} = 2\), ...
→ Tổng \(1 + 2 + 1 + 2 + \hdots\) trong 51 số hạng
Có 25 cặp \(\left(\right. 1 + 2 \left.\right) = 3\), còn dư 1 số đầu là 1
⇒ Tổng\(m o d \textrm{ } \textrm{ } 3 = 1 + 25 \cdot 3 = 76 \equiv 1 m o d \textrm{ } \textrm{ } 3\)
⇒ Không chia hết cho 3
👉 Vì không chia hết cho 3 và 13 ⇒ không chia hết cho 156
Số dư của B chia cho 156
Tìm \(B m o d \textrm{ } \textrm{ } 156\)
Biết:
\(B = \frac{5^{51} - 1}{4} \Rightarrow 4 B = 5^{51} - 1\)
Tính \(5^{51} m o d \textrm{ } \textrm{ } 156\)
Tách:
Tính \(5^{51} m o d \textrm{ } \textrm{ } 12\)
\(5 \equiv 5 m o d \textrm{ } \textrm{ } 12\)
\(5^{2} = 25 \equiv 1 m o d \textrm{ } \textrm{ } 12\)
→ \(5^{51} = \left(\right. 5^{2} \left.\right)^{25} \cdot 5 \equiv 1^{25} \cdot 5 = 5 m o d \textrm{ } \textrm{ } 12\)
→ \(5^{51} - 1 \equiv 4 \Rightarrow 4 B \equiv 4 m o d \textrm{ } \textrm{ } 12 \Rightarrow B \equiv 1 m o d \textrm{ } \textrm{ } 3\)
Tính \(5^{51} m o d \textrm{ } \textrm{ } 13\)
Đã có ở trên: \(5^{51} \equiv 8 \Rightarrow B = \frac{8 - 1}{4} = \frac{7}{4} m o d \textrm{ } \textrm{ } 13\)
Không nguyên ⇒ thử tính trực tiếp:
Tìm \(4 B \equiv 7 m o d \textrm{ } \textrm{ } 13 \Rightarrow B \equiv \frac{7}{4} m o d \textrm{ } \textrm{ } 13\)
Nghịch đảo của 4 mod 13 là số \(x\) sao cho \(4 x \equiv 1 m o d \textrm{ } \textrm{ } 13\)
→ \(x = 10\) (vì \(4 \cdot 10 = 40 \equiv 1 m o d \textrm{ } \textrm{ } 13\))
→ \(B \equiv 10 \cdot 7 = 70 \equiv 5 m o d \textrm{ } \textrm{ } 13\)
Bây giờ áp dụng CRT để tìm số \(B m o d \textrm{ } \textrm{ } 156\), sao cho:
Tìm nghiệm của hệ:
\(\left{\right. B \equiv 1 m o d \textrm{ } \textrm{ } 3 \\ B \equiv 5 m o d \textrm{ } \textrm{ } 13\)
Dùng phương pháp thử:
→ \(B = 13 k + 5 = 13 \left(\right. 3 m + 2 \left.\right) + 5 = 39 m + 26 + 5 = 39 m + 31\)
→ Số nhỏ nhất ứng với \(m = 0\): \(B \equiv \boxed{31} m o d \textrm{ } \textrm{ } 39\)
Bây giờ dùng lại với \(B m o d \textrm{ } \textrm{ } 156\), ta đã có:
Nhớ: \(B = \frac{5^{51} - 1}{4}\), nên \(B m o d...