K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2023

ai giúp mình với

 

B=1(1+3)+3(3+2)+...+53(53+2)

=1^2+3^2+...+53^2+2(1+3+...+53)

=(1^2+2^2+...+54^2)-(2^2+4^2+...+54^2)+2*(1+3+...+53)

=(1^2+2^2+...+54^2)-4(1^2+2^2+...+27^2)+2(1+3+...+53)

Đặt A=1^2+2^2+...+54^2; C=1^2+2^2+...+27^2; D=1+3+...+53

A=54*(54+1)*(2*54+1)/6=51993

C=27*(27+1)(2*27+1)/6=6930

Số số hạng của D là (53-1):2+1=27(số)

D=27*(53+1)/2=27^2=729

=>B=51993-4*6930+729=25002

Bài 5:

a) Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\)

\(\Leftrightarrow3\cdot A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+9\cdot10\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot\left(3-0\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+9\cdot10\cdot\left(11-8\right)\)

\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+3\cdot4\cdot5-2\cdot3\cdot4+...+8\cdot9\cdot10-8\cdot9\cdot10+9\cdot10\cdot11\)

\(\Leftrightarrow3\cdot A=9\cdot10\cdot11=90\cdot11=990\)

hay A=330

Vậy: A=330

4 tháng 4 2018

\(B=1.3^2+3.5^2+5.7^2+...+51.53^2\)

\(\Rightarrow3B=.......\)

Sao đó lấy 3B - B nó sẽ ra

Chúc bạn học tốt

2 tháng 6 2015

A=3/2(2/1.3+2/3.5+2/5.7+....+2/53.55)

=3/2(1-1/3+1/3-1/5+1/5-1/7+..../1/53-1/55)

=3/2(1-1/55)

=3/2.54/55

=81/55

16 tháng 4 2019

thanh niên điêu

16 tháng 4 2019

a, 1 + 2 + 3 + ... + x = 120

=> (x+1)x/2 = 120

=>x(x +1)=120.2=240

=>15.16 = 240

=>x=15

Vậy x=15

Phần b làm tương tự

c, x - ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/53.55) = 3/5

=> x = 3/5 + ( 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/53.55)

=> x = 3/5 + ( 1-1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/53 - 1/55 )

=> x = 3/5 + ( 1- 1/55 )

=> x = 3/5 + 54/55

=> x = 87/55

Vậy x = 87/55

28 tháng 4 2015

a)\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}=\left(1-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{5}\right)+\left(\frac{1}{5}-\frac{1}{7}\right)+...+\left(\frac{1}{99}-\frac{1}{101}\right)\)

                                                               \(=1-\frac{1}{101}=\frac{100}{101}\)

b) \(\frac{5}{1.3}+\frac{5}{3.5}+\frac{5}{5.7}+...+\frac{5}{99.101}=\frac{2}{1.3}.\frac{5}{2}+\frac{2}{3.5}.\frac{5}{2}+\frac{2}{5.7}.\frac{5}{2}+...+\frac{2}{99.101}.\frac{5}{2}\)

                                                                \(=\frac{5}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

                                                                \(=\frac{5}{2}.\frac{100}{101}=\frac{250}{101}\)

21 tháng 3 2016

a)100/101

b)250/101