K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

Đặt A=1+2+22+...+220081+2+22+...+22008

=>2A=2.(1+2+22+...+220081+2+22+...+22008)

=>2A=2+22+23+...+220092+22+23+...+22009

=>2A-A=(2+22+23+...+220092+22+23+...+22009)-(1+2+22+...+220081+2+22+...+22008)

=>A=22009−122009−1

=>A=(-1).(−2)2009(−2)2009+(-1).1

=>A=(-1).[(−2)2009+1][(−2)2009+1]

=>A=(-1).(1−22009)(1−22009)

=>1+2+22+...+220081+2+22+...+22008/1-2200922009

=(−1).(1−22009)1−22009(−1).(1−22009)1−22009=-1

 

 

Giải:

Đặt A=1+2+22+23+...+22008

    2A=2+22+23+24+...+22009

2A-A=(1+2+22+23+...+22008)-(2+22+23+24+...+22009)

    A =1-22009

Vậy B=1-22009/1-22009=1

Chúc bạn học tốt!

19 tháng 4 2021

          Ta gọi tử của phân số B là A ta có:

A=1+2+2^2+2^3+...+2^2008

2A=2 + 2^2 + 2^3 + 2^4 +... + 2^2009

=>A=2^2009 - 1

   A=-1 + 2^2009

          ta thấy tử là số đối của mẫu =>B=\(\dfrac{-1}{1}\)

  

        

19 tháng 4 2021

cảm ơn bạn nhiều

 

9 tháng 4 2019

24 tháng 8 2019

A = 1 + 2 + 2 2 + . . . + 2 2007

2 A = 2 + 2 2 + . . . + 2 2007 + 2 2008

A = 2A - A =  ( 2 + 2 2 + . . . + 2 2007 + 2 2008 ) - ( 1 + 2 + 2 2 + . . . + 2 2007 ) =  2 2008 - 1

Vậy  A = 2 2008 - 1

2 tháng 3 2018

Đặt A' = 23+25+27+.....+22009

Số số hạng của A' là : (22009 - 23) : 2 + 1 = 10994(số)

A' = (22009+23). 10994 : 2 = 22032. 5497 = 121109904

A = 2 + 121109904 = 121109906

Đặt B' = 22+24+26+....+2200

Số số hạng của B' là : (2200 - 22) : 2 + 1 = 1090(số)

B' = (2200 + 22) . 1090 : 2 = 2222. 545 = 1210990

B = 1 + 1210990 = 1210991 

Đặt C' = 53 + 55 +57 +....+ 5101

Số số hạng của C' là :(5101 - 53) : 2 + 1 = 2525 (số)

C' = (53 + 5101) . 2525 : 2 = 6506925

C = 6506925 + 5 = 6506930

Đặt D' = 133+135+137+....+1399

Số số hạng của D' là : (1399 - 133) :2 + 1 = 634 (số)

D' = ( 133 + 1399) . 634 : 2 = 485644

D = 485644 + 13 = 485657

24 tháng 8 2018

Ta có: A =  1   +   2   +   2 2   +   . . .   +   2 2009   +   2 2010

= 1 + 2 ( 1 + 2 +  2 2 ) + ... + 2 2008  ( 1 + 2 +  2 2  )

= 1 + 2 ( 1 + 2 + 4 ) + ... + 22008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... +  2 2008  . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

5 tháng 2 2018

Ta có: A = 1 + 2 + 2 2  + 2 3 + ... + 2 2008  + 2 2009  + 2 2010

 

= 1 + 2 ( 1 + 2 + 22 ) + ... +  2 2008  ( 1 + 2 + 22 )

= 1 + 2 ( 1 + 2 + 4 ) + ... +  2 2008 ( 1 + 2 + 4 )

= 1 + 2 . 7 + ... + 2 2008 . 7 = 1 + 7 ( 2 + ... +  2 2008  )

Mà 7 ( 2 + ... +  2 2008 ) ⋮ 7. Do đó: A chia cho 7 dư 1.

16 tháng 9 2021

A \(=\)\(1+2^1+2^2+...+2^{2007}\)

⇒2 A \(=\)\(2+2^2+...+2^{2007}+2^{2008}\)

2A - A \(=\)( \(2+2^2+...+2^{2007}+2^{2008}\) ) - ( \(1+2^1+2^2+...+2^{2007}\) )

A\(=\)\(2^{2008}-1\)

\(3A=3\left(2^{2008}-1\right)\)

      \(=3.2^{2008}-3\)

 

5 tháng 4 2023

a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)

= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)

\(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)

= 1 - 1 + \(\dfrac{2022}{2023}\)

\(\dfrac{2022}{2023}\) 

b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)

= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)

\(\dfrac{33}{11}\)

= 3 

c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }

= 2000 + { 20 - [ 4.1 - (9+5):2]}

= 2000 + { 20 - [ 4 - 14 : 2 ]}

= 2000 + { 20 - [ 4 -7]}

= 2000 + { 20 - (-3)}

= 2000 + 23

= 2023