Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có f(x) = (x - 2)g(x) + 2005
f(x) = (x - 3)h(x) + 2006
Do đa thức x2 - 5x + 6 là đa thức bậc hai nên số dư sẽ là đa thức bậc nhất hoặc hạng tử tự do.
Giả sử f(x) = (x - 2)(x - 3)t(x) + ax + b
Ta có: f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 2)[(x - 3)t(x) + a] + 2a + b , suy ra ra 2a + b = 2005
f(x) = (x - 2)(x - 3)t(x) + ax + b = (x - 3)[(x - 2)t(x) + a] + 3a + b , suy ra ra 3a + b = 2006
Từ đó ta tìm được a = 1; b = 2003
Vậy f(x) chia cho x2 - 5x + 6 dư x + 2003.
Ủa sao chự nhiên có f(x) ở đây. À mà nói vậy thì cũng sai, chứ câu này chỉ có fan KPOP mới hiểu!^-^
Áp dụng định lý Bezout ta được:
chia cho x+1 dư 2
Vì bậc của đa thức chia là 3 nên
Vì nên
Vì f(x) chia cho dư 2x+3 nên
Từ (1) và (2)
Vậy dư f(x) chia cho là
f(x) =Q(x) .(x-1)(x-3) +r(x)
f(1) =4 => r(1) =1
f(3) =14 => r(3) =14
=> a +b=1
14=3a+b=2a+a+b=14=> 2a=13 => a =13/2; b =-11/2
r(x) =13/2 x -11/2
\(f\left(x\right)=q\left(x\right).\left(x-1\right)\left(x-3\right)+ax+b\)
\(\left\{{}\begin{matrix}f\left(1\right)=q\left(x\right).0+a+b=4\left(1\right)\\f\left(3\right)=q\left(x\right).0+a.3+b=14\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}b=-1\\a=5\end{matrix}\right.\) phân dư phép chia là : 5x-1Phan Thị Huyền