Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng dãy tỉ số bằng nhau ta có :"
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+..+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+3+..+9\right)}{1+2+3+..+9}=\frac{90-45}{45}=1\)
=> a1 - 1 = 9 => a1 = 10
=> a2 - 2 = 8 => a2 = 10
...............................
=>a9 - 1 = 9 => a9 = 10
a.
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)
b.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Cách 2:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7+6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
Theo dãy tỉ số = ta có :
\(\frac{a_1-1}{9}=....=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+7+6+..+1}=\frac{\left(a_1+..+a_9\right)-\left(1+2+..+9\right)}{1+2+3+..+9}\)
\(=\frac{90-45}{45}=1\)
=> a1-1 = 1 => a1 = 2
=> a2 - 2 = 1 => a2 = 3
.......................
=> a9 - 9 = 1 => a9 = 10
Bài 2
| x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | ( -3,2) + \(\frac{2}{5}\)|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= | -2,8|
=> | x - \(\frac{1}{3}\)| + \(\frac{4}{5}\)= -2,8
=> | x - \(\frac{1}{3}\)| = -2,8 - \(\frac{4}{5}\)
=> | x - \(\frac{1}{3}\)| = - 3,6
=> x - \(\frac{1}{3}\)= -3,6
=> x = -3,6 + \(\frac{1}{3}\)
=> x = \(\frac{-49}{15}\)
Bài 3 :
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=...=\frac{a_9-9}{1}=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+...+1}\)
\(=\frac{\left[a_1+a_2+...+a_9\right]-\left[1+2+...+9\right]}{9+8+...+1}=\frac{90-45}{45}=1\)
Ta có : \(\frac{a_1-1}{9}=1\Rightarrow a_1=10\)
Tương tự : \(a_1=a_2=....=a_9=10\)
\(\frac{a_1-1}{9}=\frac{a_2}{8}=...=\frac{a_9}{1}\)\(=\frac{a_1-1+a_2-2+...+a_9-9}{9+8+7+6+...+1}\)\(=\frac{a_1+a_2+...+a_9-\left(1+2+3+...+9\right)}{1+2+3+4+5+...+6}\)
=> đề thiếu dữ kiện rồi bạn ơi
này tớ xem trong sách đó cô giáo cũng phải có lúc nhầm chứ
1) Tìm x
\(2^x+2^{x+4}=544\)
\(\Leftrightarrow2^x\left(1+2^4\right)=544\)
\(\Leftrightarrow2^x.17=544\)
\(\Leftrightarrow2^x=32=2^5\)
<=>x=5
2) \(\frac{x}{z}=\frac{z}{y}\Rightarrow\hept{\begin{cases}\frac{x^2}{z^2}=\frac{z^2}{y^2}=\frac{x^2+z^2}{z^2+y^2}\\z^2=xy\end{cases}}\Rightarrow\frac{x^2+z^2}{z^2+y^2}=\frac{z^2}{y^2}=\frac{xy}{y^2}=\frac{x}{y}\)
c)Câu hỏi của Hoàng Nhật Mai - Toán lớp 7 - Học toán với OnlineMath
Bạn tham khảo bài làm ở link này nhé!!! Chúc bạn học tốt!!!
a) \(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=....=\dfrac{a_9-9}{1}\)
\(=\dfrac{a_1-1+a_2-2+a_3-3+...+a_9-9}{9+8+7+...+1}\)
\(=\dfrac{\left(a_1+a_2+a_3+...+a_9\right)-9-8-7-...-1}{45}\)
\(=\dfrac{90-45}{45}=\dfrac{45}{45}=1\)
Từ đó => a1 = a2 = a3 = .... = a9 = 10
b) Áp dụng tính chất của dã tỉ số bằng nhau, ta có:
\(\dfrac{1+2y}{18}=\dfrac{1+6y}{6x}=\dfrac{1+2y+1+6y}{18+6x}=\dfrac{2+8y}{18+6x}=\dfrac{2\left(1+4y\right)}{2\left(9+3x\right)}=\dfrac{1+4y}{9+3x}\)
\(\Rightarrow\dfrac{1+4y}{9+3x}=\dfrac{1+4y}{24}\Rightarrow9+3x=24\)
\(\Rightarrow3x=15\)
\(\Rightarrow x=5\)
Vậy...
\(\dfrac{a_1-1}{9}=\dfrac{a_2-2}{8}=\dfrac{a_3-3}{7}=...=\dfrac{a_9-9}{1}\)
Dựa vào tính chất dãy tỉ số bằng nhau ta có:
\(=\dfrac{a_1-1+a_2-2+a_3-3+....+a_9-9}{9+8+7+.....+1}\)
\(=\dfrac{\left(a_1+a_2+a_3+.....+a_9\right)-\left(1+2+3++.....+9\right)}{9+8+7+.....+1}\)
\(=\dfrac{90-45}{45}=1\)
\(\Rightarrow a_1-1=9\Rightarrow a_1=10\)
\(\Rightarrow a_2-2=8\Rightarrow a_2=10\)
\(\Rightarrow a_3-3=7\Rightarrow a_3=10\)
\(.............................................\)
\(\Rightarrow a_9-9=1\Rightarrow a_9=10\)
\(\Rightarrow a_1=a_2=a_3=.....=a_{10}\)
Áp dụng dãy tỉ sô bàng nhau ta có :
\(\frac{a1-1}{9}=\frac{a2-2}{8}=....=\frac{a9-9}{1}=\frac{a1-1+a2-2+..+a9-9}{9+8+...+1}\)
\(=\frac{\left(a1+a2+..+a9\right)-\left(1+2+..+9\right)}{1+2+..+9}=\frac{90-45}{45}=1\)
=>a1 - 1 = 9 => a1 = 10
=> a2- 2 = 8 => a2 = 10
=> a3 - 3 = 7 => a3 = 10
.......................
=> a9 - 9 = 1 => a9 = 10
Vậy a1 = a2 = ...=a9 = 10
Áp dụng tính chất dãy tỉ số bằng nhau:
kết quả:a1=a2=....=a9=10
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{a1+a2+a3+....+a9-45}{45}=\frac{45}{45}=1\)
Vì x:y:z = 3:4:5 =>\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
=>\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=\frac{2x^2}{18}=\frac{3y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3x^2}{18+32-75}=\frac{-100}{-25}=4\)
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{z^2}{25}=4\)
=>(x;y;z)=(6;8;10),(-6;-8;-10)
B2
Ta có:
\(\frac{a_1-1}{9}=\frac{a_2-2}{8}=......=\frac{a_9-9}{1}\)=\(\frac{a_1+a_2+......+a_9-45}{45}=\frac{90-45}{45}=1\)
=>\(\frac{a_1-1}{9}=1;\frac{a_2-2}{8}=1;.......\frac{a_9-9}{1}=1\)
=>a1=a2=......=a9=10