Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
a) Từ x:y:z = 3:5:(-2) => \(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
=> \(\begin{cases}x=93\\y=155\\z=-62\end{cases}\)
b) Từ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
=> \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3z-7y+5z}{63-98+50}=\frac{30}{15}=2\)
=> \(\begin{cases}x=42\\y=28\\z=20\end{cases}\)
a) Giải:
Ta có: \(x:y:z=3:5:\left(-2\right)\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{z}{-2}=\frac{5x}{15}=\frac{3z}{-6}=\frac{5x-y+3z}{15-5+\left(-6\right)}=\frac{124}{4}=31\)
+) \(\frac{x}{3}=31\Rightarrow x=93\)
+) \(\frac{y}{5}=31\Rightarrow y=155\)
+) \(\frac{z}{-2}=31\Rightarrow z=-62\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(93;155;-62\right)\)
b) Giải:
Ta có: \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{30}{15}=2\)
+) \(\frac{x}{21}=2\Rightarrow x=42\)
+) \(\frac{y}{14}=2\Rightarrow y=28\)
+) \(\frac{z}{10}=2\Rightarrow z=20\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(42;28;20\right)\)
a) Đặt x/3 = y/4 = k ta có: x = 3k và y = 4k
=> x.y = 3k.4k = 12
> 12k² = 12 => k = -1; 1
=> x = 3; y = 4 hoặc x = -3; y = -4
b) Làm tương tự
c) Từ x/2 = y/3 => x/10 = y/15 (1)
Từ y/5 = z/4 => y/15 = z/12 (2)
Từ (1) và (2) ta có: x/10 = y/15 = z/12
Áp dụng t/c dãy tỷ số bằng nhau ta có:
x/10 = y/15 = z/12 = (x + y - z)/(10 + 15 - 12) = 39/13 = 3
Từ x/10 = 3 => x = 30
Từ y/15 = 3 => y = 45
Từ z/12 = 3 => z = 36
d) Làm tương tự c ta có:
Từ x/3 = y/4 => x/9 = y/12 (1)
Từ y/3 = z/5 => y/12 = z/20 (2)
Từ (1) và (2) ta có: x/9 = y/12 = z/20 hay 2x/18 = 3y/36 = z/20
Áp dụng TC DTS BN ta có:
2x/18 = 3y/36 = z/20 = (2x - 3y + z )/(18 - 36 + 20) = 6/2 = 3
Từ 2x/18 = 3 => x = 27
Từ 3y/36 = 3 => y = 36
Từ x/20 = 3 => z = 60
e) Từ 2x = 3y => x/3 = y/2
Từ 5y = 7z => y/7 = z/5 (Quay về VD c,d)
f) Làm tương tự
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
a)2x=3y 5y=7z
=>\(\frac{x}{3}=\frac{y}{2}=\frac{x}{21}=\frac{y}{14}\) =>\(\frac{y}{7}=\frac{z}{5}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
=>\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}\)\(=\frac{30}{-15}=-2\)
\(\frac{x}{21}=-2=>x=-2.21=-42\)
\(\frac{y}{14}=-2=>y=-2.14=-28\)
\(\frac{z}{10}=-2=>z=-2.10=-20\)
a; Ta có: 2x=3y
nên x/3=y/2
=>x/21=y/14
Ta có: 5y=7z
nên y/7=z/5
=>y/14=z/10
=>x/21=y/14=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3\cdot21-7\cdot14+5\cdot10}=\dfrac{30}{15}=2\)
Do đó: x=42; y=28; z=20
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{11}{6}}=\dfrac{y}{\dfrac{2}{9}}=\dfrac{z}{\dfrac{5}{18}}=\dfrac{-x+y+z}{-\dfrac{11}{6}+\dfrac{2}{9}+\dfrac{5}{18}}=\dfrac{-120}{-\dfrac{4}{3}}=90\)
Do đó: x=165; y=20; z=25
c: x/3=y/4
nên x/15=y/20
y/5=z/7
nên y/20=z/28
=>x/15=y/20=z/28
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-z}{2\cdot15+3\cdot20-28}=\dfrac{124}{62}=2\)
Do đó: x=30; y=40; z=56
a) Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)
Vậy ....
b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)
Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được :
\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)
Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)
Vậy .....
c) Ta có : \(x\div y\div z=3\div4\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)
Vậy ...
d) Ta có : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
\(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được :
\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)
\(\Leftrightarrow63y-98y+50y=-420\)
\(\Leftrightarrow15y=-420\Rightarrow y=-28\)
Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)
e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)
Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)
Vậy ...
a) ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\frac{y}{6}=\frac{2y}{12}\)
\(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\) (2)
từ (1) và (2) suy ra:
\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)
..................................y;z bn tự tính ha!^^
b) ta có:
\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)
\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)
thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương tự lun! (câu c mk ko pik làm đâu!^^)
e)
ta có:
3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
vì xy = 84 nên : 7k.3k = \(84\)
\(\Rightarrow21k^2=84\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
với k = 2 thì x =........... ; y=................
với k=-2 thì x=........ ; y=....................
ự làm nốt ha!the end!^^
1) Ta có a:b:c:d = 2:3:4:5
\(\Rightarrow\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{d}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{d}{5}=\dfrac{a+b+c+d}{2+3+4+5}=\dfrac{42}{14}=3\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{a}{2}=3\Rightarrow a=3.2=6\\\dfrac{b}{3}=3\Rightarrow b=3.3=9\\\dfrac{c}{4}=3\Rightarrow c=3.4=12\\\dfrac{d}{5}=3\Rightarrow d=3.5=15\end{matrix}\right.\)
Vậy a = 6, b = 9, c = 12, d = 15
2) Ta có: \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\) (1)
Ta cũng có: \(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x-7y+5z}{3.21-7.14+5.10}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\Rightarrow x=2.21=42\\\dfrac{y}{14}=2\Rightarrow y=2.14=28\\\dfrac{z}{10}=2\Rightarrow z=2.10=20\end{matrix}\right.\)
Vậy x = 42, y = 28, z = 20