Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\)
\(=\frac{10}{1}=10\)
mấy câu còn lại bạn tự làm nốt nhé mk ban rồi
a/ Đề sai
b/ \(\sqrt{125}-4\sqrt{45}+3\sqrt{2}-\sqrt{80}=5\sqrt{5}-12\sqrt{5}+3\sqrt{2}-4\sqrt{5}\)
\(=-11\sqrt{5}+3\sqrt{2}\)
c/ \(2\sqrt{\frac{27}{4}}-\sqrt{\frac{48}{9}}-\frac{2}{5}\sqrt{\frac{75}{16}}=2.\frac{3\sqrt{3}}{2}-\frac{4\sqrt{3}}{3}-\frac{2}{5}.\frac{5\sqrt{3}}{4}\)
\(=3\sqrt{3}-\frac{4\sqrt{3}}{3}-\frac{\sqrt{3}}{2}=\sqrt{3}\left(3-\frac{4}{3}-\frac{1}{2}\right)=\frac{7\sqrt{3}}{6}\)
d/ \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\cdot\sqrt{11}+3\sqrt{22}=33-3\sqrt{22}-11+3\sqrt{22}=22\)
a)
\(4\sqrt{7}=\sqrt{4^2.7}=\sqrt{112}\)
\(3\sqrt{13}=\sqrt{3^2.13}=\sqrt{117}\)
\(\sqrt{112}< \sqrt{117}\Rightarrow 4\sqrt{7}< 3\sqrt{13}\)
b) \(3\sqrt{12}=\sqrt{3^2.12}=\sqrt{9.2^2.3}=2\sqrt{27}>2\sqrt{16}\)
c)
\(\frac{1}{4}\sqrt{82}=\sqrt{\frac{82}{16}}=\sqrt{\frac{41}{8}}=\sqrt{5+\frac{1}{8}}\)
\(6\sqrt{\frac{1}{7}}=\sqrt{\frac{36}{7}}=\sqrt{5+\frac{1}{7}}\)
\(\sqrt{5+\frac{1}{8}}< \sqrt{5+\frac{1}{7}}\Rightarrow \frac{1}{4}\sqrt{82}< 6\sqrt{\frac{1}{7}}\)
d)
\(\frac{1}{2}\sqrt{\frac{17}{2}}=\sqrt{\frac{17}{8}}=\sqrt{2+\frac{1}{8}}\)
\(\frac{1}{3}\sqrt{19}=\sqrt{\frac{19}{9}}=\sqrt{2+\frac{1}{9}}\)
\(\sqrt{2+\frac{1}{8}}>\sqrt{2+\frac{1}{9}}\Rightarrow \frac{1}{2}\sqrt{\frac{17}{2}}> \frac{1}{3}\sqrt{19}\)
e)
\(3\sqrt{3}-2\sqrt{2}=\sqrt{27}-\sqrt{8}\)
Mà \(\sqrt{27}>\sqrt{25}; \sqrt{8}< \sqrt{9}\Rightarrow \sqrt{27}-\sqrt{8}> \sqrt{25}-\sqrt{9}=5-3=2\)
Vậy \(3\sqrt{3}-2\sqrt{2}>2\)
f)
\(\sqrt{7}+\sqrt{5}< \sqrt{9}+\sqrt{9}=6\)
\(\sqrt{49}=7\)
\(\Rightarrow \sqrt{7}+\sqrt{5}< 6< 7=\sqrt{49}\)
g)
\(\sqrt{2}< \sqrt{3}; \sqrt{11}< \sqrt{25}=5\)
\(\Rightarrow \sqrt{2}+\sqrt{11}< \sqrt{3}+5\)
h) Lặp lại câu d
i)
\(\sqrt{21}>\sqrt{20}\); \(\sqrt{5}< \sqrt{6}\)
\(\Rightarrow \sqrt{21}-\sqrt{5}> \sqrt{20}-\sqrt{6}\)
a) \(\frac{\sqrt{2}}{2}\)
b)\(\frac{4}{9}\)
c)\(\frac{5}{3}\)
d)\(\frac{1}{12}\)
f) \(\frac{4}{15}\)
g) \(\frac{27}{100}\)
h) 2
i) -17
\(a,\sqrt{\frac{72}{9}}:\sqrt{8}=\frac{\sqrt{72}}{\sqrt{9}}.\frac{1}{\sqrt{8}}\)
\(=\frac{6\sqrt{2}}{3}.\frac{1}{2\sqrt{2}}\)
\(=1\)
\(b,\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)
\(=33\sqrt{3}:\sqrt{3}\)
\(=33\)
\(c,\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\left(5\sqrt{5}+7\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)
\(=11\sqrt{5}:\sqrt{5}\)
\(=11\)
\(d,\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{7}{\sqrt{7}}\right):\sqrt{7}\)
\(=\frac{4}{\sqrt{7}}.\frac{1}{\sqrt{7}}=\frac{4}{7}\)