K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2019

a)= \(a^2+b^2+c^2-2ab-2bc+2ac-\left(b^2-2bc+c^2\right)-2ab-2ac\)

=\(a^2+b^2+c^2-2ab-2bc+2ac-b^2+2bc-c^2-2ab-2ac\)

=\(a^2-4ab\)

18 tháng 7 2019

b) = \(a^2+b^2+c^2-2ab-2bc+2ac+a^2+b^2+c^2\)\(+2ab-2bc-2ac-2\left(b^2-2bc+c^2\right)\)

=\(2a^2+2b^2+2c^2-4bc-2b^2+4bc-2c^2\)

=\(2a^2\)

21 tháng 7 2021

nhanh lên với ak

21 tháng 7 2021

Ta có :

a^3+b^3+c^3-3abc

=(a+b)^3+c^3-3ab(a+b) - 3abc

=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)

=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)

=> 2(a^3+b^3+c^3-3abc)= (a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ca)

=(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]

25 tháng 6 2017

a) Biến đổi VT ta có :

(a2-b2)2 + (2ab)2

= a4 -2a2+b4+4a2b2

= a4+2a2b2 +b4

= (a2b2)2 = VP (đpcm)

hiha

25 tháng 6 2017

b) Biến đổi vế trái ta có :

(ax+b)2 + (a-bx)2+cx2+c2

= a2x2+2axb+b2 +a2 - 2axb+b2x2 +c2x2+ c2

= (a2+b2+c2) + x2(a2+b2+c2)

= (a2+b2+c2) (x2+1) = VP (đpcm)

oaoa

19 tháng 9 2017

a) (a + b + c + d)(a - b - c - d)

= a(a + b + c + d) - b(a + b + c + d) - c(a + b + c + d) - d(a + b + c + d)

= (aa + ab + ac + ad) - (ba + bb + bc + bd) - (ca + cb + cc + cd) - (da + db + dc + dd)

= aa - bb - cc - dd

NV
20 tháng 1

Cái đầu ko rút gọn được

Cái sau:

\(=\dfrac{\left(a+b\right)^2-c^2}{\left(a+c\right)^2-b^2}=\dfrac{\left(a+b+c\right)\left(a+b-c\right)}{\left(a+b+c\right)\left(a+c-b\right)}=\dfrac{a+b-c}{a-b+c}\)

17 tháng 10 2021

\(a,=x^3-16x-x^2-1-x^2+1=x^3-2x^2-16x\\ b,=y^4-81-y^4+4=-77\\ d,=a^2+b^2+c^2+2ab-2bc-2ac+a^2-2ac+c^2-2ab-2ac\\ =2a^2+b^2+2c^2-2bc-6ac\)

23 tháng 6 2018

b) =(y^2-9)(y^2+9)-(y^4-4)

=y^4-81-y^4+4=-77

13 tháng 3 2017

a) đáp án A=1

b) B=0

c) C=1