K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình xin lỗi , mình xin chịu lúc nào mình nghĩ ra thì mình sẽ giúp cậu

15 tháng 2 2016

Gọi d là ƯCLN ( 2n - 1 ; 2n - 2 )

=> 2n - 1 ⋮ d

=> 2n - 2 ⋮ d

=> [ ( 2n - 2 ) - ( 2n - 1 ) ] ⋮ d

=> 2 - 1 ⋮ d

=> 1 ⋮ d => d = 1

Vì ƯCLN ( 2n - 1 ; 2n - 2 ) = 1 nên 2n-1/2n-2 là phân số tối giản

Ccs câu sau làm tương tự

11 tháng 7 2017

Gọi d là ƯCLN của n + 1 và 2n + 3

Khi đó : n + 1 chia hết cho d , 2n + 3 chia hết cho d

<=>  2(n + 1) chia hết cho d , 2n + 3 chia hết cho d

<=>  2n + 2 chia hết cho d , 2n + 3 chia hết cho d

=> (2n + 3) - (2n + 2) chia hết cho d

=> 1 chia hết cho d

Vậy \(\frac{n+1}{2n+3}\) là phân số tối giản

11 tháng 7 2017

a,Gọi d là ƯCLN của n+1 và 2n+3(d thuộc Z/ d khác 0)

=> n+1 chia hết cho d; 2n+ 3 chia hết cho d

=>(n+1)-(2n+3) chia hết cho d

=>1chia hết cho d=> d thuộc Ư của 1

=.> \(\frac{n+1}{2n+3}\)là ps tối giản

b, Gọi d là ƯCLN (2n+3;4n+8)(d thuộc Z/ d khác 0)

=>2n+3 chia hết cho d;4n+8 chia hết cho d

=>(2n+3)-(4n+8) chia hết cho d

=>(2n+3)-(2n+4) chia hết cho d

=>-1 chia hết cho d

=>\(\frac{2n+3}{4n+8}\)là ps tối giản

DD
27 tháng 2 2021

a) Đặt \(d=\left(n+1,2n+3\right)\).

Suy ra \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\Rightarrow\left(2n+3\right)-\left(2n+2\right)=1⋮d\)

Suy ra \(d=1\)

Do đó ta có đpcm. 

b) Bạn làm tương tự ý a). 

c) Đặt \(d=\left(3n+2,5n+3\right)\).

Ta có: \(\hept{\begin{cases}3n+2⋮d\\5n+3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}5\left(3n+2\right)⋮d\\3\left(5n+3\right)⋮d\end{cases}}\Rightarrow5\left(3n+2\right)-3\left(5n+3\right)=1⋮d\).

Suy ra \(d=1\)

27 tháng 2 2021
N=2 2n=2.10