K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2018

bạn ơi sửa lại đề bài 1 đi mik k hiểu

23 tháng 4 2016

khó kinh,,,

23 tháng 4 2016

tự nhiên vẽ ra điểm I chả liên quan j

11 tháng 3 2020

lm hộ tớ phần 4 thôi nha mn

Gọi A' là giao điểm của đường tròn ngoại tiếp tam giác AEF và tia AB

Ta chứng minh được E,A,N  và M, A, F thẳng hàng

=> A đối xứng với A' qua C => B đối xứng với A' qua điểm A mà A' cố định

=> Tâm I của đường tròn ngoại tiếp tam giác BMN  nằm trên đường trung trực của đoạn thẳng  BA'.

 

B1: Cho (O;R) đường kính AB cố định. Trên tia đối của AB lấy C sao cho AC = R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm OA, qua D vẽ dây cung EF bất kì của (O) (EF không là đường kính) . Tia BE cắt d tại M , BF cắt d tại N . Chứng minh tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi B2:Cho (O;R) và dây cung AB sao cho...
Đọc tiếp

B1: Cho (O;R) đường kính AB cố định. Trên tia đối của AB lấy C sao cho AC = R. Kẻ đường thẳng d vuông góc với BC tại C. Gọi D là trung điểm OA, qua D vẽ dây cung EF bất kì của (O) (EF không là đường kính) . Tia BE cắt d tại M , BF cắt d tại N . Chứng minh tâm I của đường tròn ngoại tiếp tam giác BMN luôn nằm trên một đường thẳng cố định khi dây cung EF thay đổi

B2:Cho (O;R) và dây cung AB sao cho BOC =90 ,Tiếp tuyến với đường tròn tại B và C cắt nhau ở A ,trên cung nhỏ BC lấy I , qua I vẽ tiếp tuyến với đường tròn cắt AB , AC tại M và N .OM,ON cắt BC lần lượt tại H và K .Chứng minh \(S_{OHK}=S_{MHKN}\)

B3: Cho điểm A nằm ngoài đường tròn tâm O, 2 tiếp tuyến AB,AC (B,C là các tiếp điểm).H là giao điểm của AO và BC.Đường tròn đường kính CH cắt (O) tại D .I là trung điểm của AB.ọi T là trung điểm của BD.E là giao điểm của (I) và AC , S là giao điểm của AO và BE. Chứng minh TS // HD

0

a: Xét (O) có

ΔBEA nội tiếp

BA là đường kính

=>ΔBEA vuông tại E

góc MCA+góc MEA=90+90=180 độ

=>MCAE nội tiếp

b: góc BFA=1/2*sđ cung BA=1/2*180=90 độ

Xét ΔBFA vuông tại F và ΔBCN vuông tai C có

góc B chung

=>ΔBFA đồng dạng với ΔBCN

=>BF/BC=BA/BN

=>BC*BA=BF*BN

Xét ΔBEA vuông tại E và ΔBCM vuông tại C có

góc EBA chung

=>ΔBEA đồng dạng với ΔBCM

=>BE/BC=BA/BM

=>BC*BA=BE*BM=BF*BN

4 tháng 3 2023

Có hình ko bạn

12 tháng 2 2022

a. Xét tứ giác ABOC có: \(\left\{{}\begin{matrix}\widehat{BOC}=\widehat{OBA}=\widehat{OCA}=90^o\\BO=CO=R\end{matrix}\right.\) \(\Rightarrow\)Tứ giác ABOC là hình vuông

b. Gọi \(E=HN\cap OI\)

Ta có: \(\left\{{}\begin{matrix}\widehat{HEO}=\widehat{IEN}\left(đối.đỉnh\right)\\\widehat{IEN}=\widehat{HMN}\left(cùng.phụ.\widehat{HNM}\right)\end{matrix}\right.\) \(\Rightarrow\widehat{HEO}=\widehat{HMN}\)

\(\Rightarrow\widehat{OHE}=\widehat{OIM}=90^o\)

Xét tứ giác OHNC có: \(\widehat{OCN}+\widehat{OHN}=90^o+90^o=180^o\)

\(\Rightarrow\)Tứ giác OHNC nội tiếp 

a: Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC và góc OBA=góc OCA=90 đọ

Xét tứ giác ABOC có

góc OBA=góc OCA=góc BOC=90 độ

AB=AC

=>ABOC là hìh vuông

b: Xét (O) có

MB,MI là tiếp tuyến

=>MB=MI và góc IOM=góc BOM=1/2*góc IOB

Xét (O) có

NC,NI là tiếp tuyến

=>NC=NI và góc ION=góc CON=1/2*góc IOC

mà góc MON=1/2*góc BOC=45 độ

nên góc HON=45 độ

góc BOC=90 độ

=>sđ cung BC=90 độ

=>góc NCM=1/2*sđ cung BC=45 độ

=>góc NCH=45 độ

Vì góc NCH=góc NOH

nên OHNC nội tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếpb) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.ANCâu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi...
Đọc tiếp

Câu 1: Cho (O;R) và điểm A nằm ngoài đường tròn (O). Vẽ 2 tiếp tuyến AB, AC của (O) (B,C: tiếp điểm). Vẽ cát tuyến ADE của (O); D nằm giữa D & E; tia AD nằm giữa 2 tia AB và AO.

a) Gọi H là giao điểm của OA và BC. C/m: DEOH nội tiếp

b) Đường thẳng AO cắt (O) tại M và N (M nằm giữa A và O). C/m: EH.AD= MH.AN

Câu 2: Cho nửa đường tròn tâm (O;R) đường kính AB và điểm C trên đường tròn sao cho CA=CB. Gọi M là trung điểm của dây cung AC. Nối BM cắt cung AC tại E; AE và BC kéo dài cắt nhau tại D.

a) C/m: MOCD là hình bình hành

b) Vẽ đường tròn tâm E bán kính EA cắt (O) tại điểm thứ 2 là N. Kẻ EF vuông góc với AC, EF cắt AN tại I, cắt (O) tại điểm thứ 2 là K; EB cắt AN tại H. C/m: BHIK nội tiếp.

Câu 3: Cho (O;R). Từ điểm S nằm ngoài đường tròn sao cho SO=2R. Vẽ tiếp tuyến SA,SB (A,B là tiếp tuyến). Vẽ cát tuyến SDE (D nằm giữa S và E), điểm O nằm trong góc ESB. Từ O kẻ đường vuông góc với OA cắt SB tại M. Gọi I là giao điểm của OS và (O).

a) C/m: MI là tiếp tuyến của (O)

b) Qua D kẻ đường vuông góc với OB cắt AB tại H và EB tại K. C/m: H là trung điểm của DK.

0