K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

1. Pt có nghiệm khi

30 tháng 11 2019

A. M≠5/4. B. m≤5/4. C.m<4/5. D.m=5/4

MONG BẠN GIẢI CHI TIẾT GIÚP MK VS ạ

13 tháng 4 2022

We have : \(A=x+y+\dfrac{1}{2x}+\dfrac{2}{y}=\dfrac{x+y}{2}+\left(\dfrac{y}{2}+\dfrac{2}{y}\right)+\left(\dfrac{1}{2x}+\dfrac{x}{2}\right)\)

\(Applying\) C-S we have : \(\dfrac{y}{2}+\dfrac{2}{y}\ge2;\dfrac{1}{2x}+\dfrac{x}{2}\ge1\)

x + y \(\ge3\)  \(\Rightarrow\dfrac{x+y}{2}\ge\dfrac{3}{2}\)

So : \(A\ge\dfrac{3}{2}+2+1=\dfrac{9}{2}\)

" = " \(\Leftrightarrow x=1;y=2\)

AH
Akai Haruma
Giáo viên
6 tháng 3 2019

Lời giải:

1)

PT hoành độ giao điểm:
\(x^2-3x+5-(x+b)=0\)

\(\Leftrightarrow x^2-4x+(5-b)=0\)

Để 2 ĐTHS có một điểm chung thì pt hoành độ giao điểm có một nghiệm duy nhất

\(\Leftrightarrow \Delta'=2^2-(5-b)=0\)

\(\Leftrightarrow b=1\)

2)

\(M=|2x+3|+|x-1|\)

\(2M=2|2x+3|+|2x-2|=(|2x+3|+|2x-2|)+|2x+3|\)

\(=(|2x+3|+|2-2x|)+|2x+3|\)

\(\geq |2x+3+2-2x|+|2x+3|\)

\(\geq |3+2|+0=5\)

\(\Rightarrow M\geq \frac{5}{2}\). Vậy \(M_{\min}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(\left\{\begin{matrix} (2x+3)(2-2x)\geq 0\\ 2x+3=0\end{matrix}\right.\Leftrightarrow x=-\frac{3}{2}\)

1 tháng 8 2016

áp dụng tính chất |A|+|B|>+|A+B|

y=|x-2|+|1-x|\(\ge\)|x-2+1-x|=|-1|=1

vậy gtri nhỏ nhất y=1 khi (x-2)(1-x)\(\ge0\)

<=> \(-1\le2\)

các câu sau tương tự nha

1 tháng 8 2016

tương tự mần chi được hè

2: \(-4x^2+5x-2\)

\(=-4\left(x^2-\dfrac{5}{4}x+\dfrac{1}{2}\right)\)

\(=-4\left(x^2-2\cdot x\cdot\dfrac{5}{8}+\dfrac{25}{64}+\dfrac{7}{64}\right)\)

\(=-4\left(x-\dfrac{5}{8}\right)^2-\dfrac{7}{16}< =-\dfrac{7}{16}< 0\forall x\)

Sửa đề:\(f\left(x\right)=\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}\)

Để f(x)>0 với mọi x thì \(\dfrac{-x^2+4\left(m+1\right)x+1-4m^2}{-4x^2+5x-2}>0\forall x\)

=>\(-x^2+4\left(m+1\right)x+1-4m^2< 0\forall x\)(1)

\(\text{Δ}=\left[\left(4m+4\right)\right]^2-4\cdot\left(-1\right)\left(1-4m^2\right)\)

\(=16m^2+32m+16+4\left(1-4m^2\right)\)

\(=32m+20\)

Để BĐT(1) luôn đúng với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}32m+20< 0\\-1< 0\left(đúng\right)\end{matrix}\right.\)

=>32m+20<0

=>32m<-20

=>\(m< -\dfrac{5}{8}\)

10 tháng 2 2023

không biết :))))