Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì CK là tia phân giác của \(\widehat{ACD}\)nên \(\widehat{ACK}=\widehat{KCD=}\frac{\widehat{ACD}}{2}\)
Vì CM là tia phân giác của \(\widehat{DCB}\)nên \(\widehat{BCM}=\widehat{MCD}=\frac{\widehat{DCB}}{2}\)
Xét \(\Delta DBC\)vuông tại D có: \(\widehat{DCB}+\widehat{B}=90^0\)
mà \(\widehat{DCB}+\widehat{ACD}=90^0\)
=> \(\widehat{B}=\widehat{ACD}\)
Vì \(\widehat{AMC}\)là góc ngoài của \(\Delta MCB\)nên \(\widehat{AMC}=\widehat{B}+\widehat{MCB}=\widehat{ACD}+\widehat{MCB}=90^{0^{ }}-\widehat{DCM}=90^0-\widehat{MCB}\)
Ta lại có \(\widehat{ACM}=90^{0^{ }}-\widehat{MCB}\)
Xét\(\Delta ACM\)có \(\widehat{AMC}\)=\(\widehat{ACM}\)(=900-\(\widehat{MCB}\))
nên \(\Delta ACM\)cân ( đpcm)
mình vẽ hình rồi, còn phần chứng minh làm như bạn Trần Hoàng Việt nha!!
a) Ta có : A=900 ; B=300
=> C=180-A-B=180-90-30=60
b) Xét tam giác ACD và MCD ta có :
CD chung (1)
CM=CA (gt)(2)
góc ACD=góc DCM (gt) (3)
Từ (1)(2)(3) =>\(\Delta\)ACD=\(\Delta\)MCD (c.g.c)
c) Ta có :AK//CD; CK//AD => tứ giác ADCK là hình bình hành
=>AK=CD (cặp cạnh tương ứng )
d)Ta có : \(\widehat{BDC}\)=180-30-60:2=1200
\(\widehat{CPA}\)=180-120=60
Do ADCK là hình bình hành nên \(\widehat{CPA}\)=\(\widehat{AKC}\)=\(60^0\)