Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Lớp 8 thì bài này hơi phức tạp, lớp 9 sử dụng delta kẹp biến sẽ dễ hơn
Hướng dẫn 1 câu, câu sau bạn tự làm nhé:
\(\left(2x^2-xy-y^2\right)+7x+2y-7=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+7x+2y-7=0\)
(Đến đây ta cần chuyển về dạng \(XY+a.X+b.Y+...\) để đưa về pt nghiệm nguyên quen thuộc.
Do đó ta cần phân tách \(7x+2y\) về dạng \(a\left(x-y\right)+b\left(2x+y\right)\)
\(7x+2y=a\left(x-y\right)+b\left(2x+y\right)\)
\(\Leftrightarrow7x+2y=\left(a+2b\right)x+\left(-a+b\right)y\)
Đồng nhất hệ số 2 vế: \(\left\{{}\begin{matrix}a+2b=7\\-a+b=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=3\end{matrix}\right.\)
Do đó ta tách được như dưới đây, toàn bộ phần tách trên làm ở nháp):
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)-7=0\)
(Dạng cơ bản \(XY+X+3Y-7=0\) rồi)
\(\Leftrightarrow\left(x-y\right)\left(2x+y\right)+\left(x-y\right)+3\left(2x+y\right)+3-10=0\)
\(\Leftrightarrow\left(x-y\right)\left(2x+y+1\right)+3\left(2x+y+1\right)=10\)
\(\Leftrightarrow\left(x-y+3\right)\left(2x+y+1\right)=10\)
Đến đây thì chỉ cần lập bảng ước số là xong
Làm bằng cách lớp 9 như nào vậy anh . Anh hướng dẫn e trước năm sau đỡ phải hỏi lại :D

Bài giải:
a) x2 – xy + x – y = (x2 – xy) + (x - y)
= x(x - y) + (x -y)
= (x - y)(x + 1)
b) xz + yz – 5(x + y) = z(x + y) - 5(x + y)
= (x + y)(z - 5)
c) 3x2 – 3xy – 5x + 5y = (3x2 – 3xy) - (5x - 5y)
= 3x(x - y) -5(x - y) = (x - y)(3x - 5).
\(a) x^2 - xy+x-y\) \(= (x^2 - xy) + ( x- y) \)
\(=x(x-y) + (x-y)\)
\(= (x-y) (x+1)\)
\(b) xz + yz - 5(x+y)\) \(= (xz + yz) - 5(x+y)\)
\(= z(x+y) - 5(x+y)\)
\(= (x+y) (z-5)\)
\(c) 3x^2 - 3xy - 5x +5y = (3x^2-3xy) - (5x-5y)\)
\(= 3x(x-y) - 5(x-y)\)
\(= (x-y)(3x-5)\)

bài này là phân tích đa thức thành nhân tử sao
a) x2 -xy+x-y
= ( x2-xy) +(x-y)
= x (x-y) +(x-y)
= (x-y) (x+1)
b) xz+yz-5( x+y)
= ( xz+yz)-5(x+y)
= z(x+y)-5(x+y)
= (x+y) (z-5)
c) 3x2-3xy-5x+5y
= ( 3x2 -3xy)-(5x+5y)
= 3x(x-y) - 5(x-y)
= (x-y) (3x-5)

a) \(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
Giải:
Bắt đầu với vế trái của phương trình:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\)
Bước 1: Mở rộng \(\left(\right. x + y \left.\right)^{3}\):
\(\left(\right. x + y \left.\right)^{3} = x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3}\)
Bước 2: Mở rộng \(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right)\):
\(\left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = x \left(\right. x^{2} - x y + y^{2} \left.\right) + y \left(\right. x^{2} - x y + y^{2} \left.\right)\)\(= x^{3} - x^{2} y + x y^{2} + y x^{2} - x y^{2} + y^{3}\)\(= x^{3} + y^{3} + \left(\right. y x^{2} - x^{2} y \left.\right) = x^{3} + y^{3}\)
Bước 3: Trừ các biểu thức:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = \left(\right. x^{3} + 3 x^{2} y + 3 x y^{2} + y^{3} \left.\right) - \left(\right. x^{3} + y^{3} \left.\right)\)\(= 3 x^{2} y + 3 x y^{2}\)\(= 3 x y \left(\right. x + y \left.\right)\)
Vậy, phương trình đã đúng:
\(\left(\right. x + y \left.\right)^{3} - \left(\right. x + y \left.\right) \left(\right. x^{2} - x y + y^{2} \left.\right) = 3 x y \left(\right. x + y \left.\right)\)
b) \(B = \left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) - 3 \left(\right. 9 x^{3} - 2 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\):
\(\left(\right. 3 x + 2 \left.\right) \left(\right. 9 x^{2} - 6 x + 4 \left.\right) = 3 x \left(\right. 9 x^{2} - 6 x + 4 \left.\right) + 2 \left(\right. 9 x^{2} - 6 x + 4 \left.\right)\)\(= 27 x^{3} - 18 x^{2} + 12 x + 18 x^{2} - 12 x + 8\)\(= 27 x^{3} + 8\)
Bước 2: Mở rộng \(3 \left(\right. 9 x^{3} - 2 \left.\right)\):
\(3 \left(\right. 9 x^{3} - 2 \left.\right) = 27 x^{3} - 6\)
Bước 3: Trừ hai biểu thức:
\(B = \left(\right. 27 x^{3} + 8 \left.\right) - \left(\right. 27 x^{3} - 6 \left.\right) = 8 + 6 = 14\)
Vậy, \(B = 14\).
c) \(C = \left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right)\):
\(\left(\right. x - 2 \left.\right) \left(\right. x^{2} - 2 x + 4 \left.\right) = x \left(\right. x^{2} - 2 x + 4 \left.\right) - 2 \left(\right. x^{2} - 2 x + 4 \left.\right)\)\(= x^{3} - 2 x^{2} + 4 x - 2 x^{2} + 4 x - 8\)\(= x^{3} - 4 x^{2} + 8 x - 8\)
Bước 2: Trừ biểu thức \(x^{3} - 7\):
\(C = \left(\right. x^{3} - 4 x^{2} + 8 x - 8 \left.\right) - \left(\right. x^{3} - 7 \left.\right)\)\(C = x^{3} - 4 x^{2} + 8 x - 8 - x^{3} + 7\)\(C = - 4 x^{2} + 8 x - 1\)
Vậy, \(C = - 4 x^{2} + 8 x - 1\).
d) \(D = \left(\right. x + 1 \left.\right)^{3} - \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) - 3 x \left(\right. x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(\left(\right. x + 1 \left.\right)^{3}\):
\(\left(\right. x + 1 \left.\right)^{3} = x^{3} + 3 x^{2} + 3 x + 1\)
Bước 2: Mở rộng \(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(\left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = x \left(\right. x^{2} + x + 1 \left.\right) - 1 \left(\right. x^{2} + x + 1 \left.\right)\)\(= x^{3} + x^{2} + x - x^{2} - x - 1\)\(= x^{3} - 1\)
Bước 3: Mở rộng \(3 x \left(\right. x + 1 \left.\right)\):
\(3 x \left(\right. x + 1 \left.\right) = 3 x^{2} + 3 x\)
Bước 4: Trừ các biểu thức:
\(D = \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) - \left(\right. x^{3} - 1 \left.\right) - \left(\right. 3 x^{2} + 3 x \left.\right)\)\(D = x^{3} + 3 x^{2} + 3 x + 1 - x^{3} + 1 - 3 x^{2} - 3 x\)\(D = 2\)
Vậy, \(D = 2\).
e) \(E = 3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) + x \left(\right. x + 1 \left.\right) - x \left(\right. x^{2} + x + 1 \left.\right)\)
Giải:
Bước 1: Mở rộng \(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right)\):
\(3 \left(\right. x - 1 \left.\right) \left(\right. x^{2} + x + 1 \left.\right) = 3 \left(\right. x \left(\right. x^{2} + x + 1 \left.\right) - \left(\right. x^{2} + x + 1 \left.\right) \left.\right)\)\(= 3 \left(\right. x^{3} + x^{2} + x - x^{2} - x - 1 \left.\right) = 3 \left(\right. x^{3} - 1 \left.\right)\)\(= 3 x^{3} - 3\)
Bước 2: Mở rộng \(x \left(\right. x + 1 \left.\right)\):
\(x \left(\right. x + 1 \left.\right) = x^{2} + x\)
Bước 3: Mở rộng \(x \left(\right. x^{2} + x + 1 \left.\right)\):
\(x \left(\right. x^{2} + x + 1 \left.\right) = x^{3} + x^{2} + x\)
Bước 4: Trừ các biểu thức:
\(E = \left(\right. 3 x^{3} - 3 \left.\right) + \left(\right. x^{2} + x \left.\right) - \left(\right. x^{3} + x^{2} + x \left.\right)\)\(E = 3 x^{3} - 3 + x^{2} + x - x^{3} - x^{2} - x\)\(E = 2 x^{3} - 3\)
Vậy, \(E = 2 x^{3} - 3\).
g) \(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 2 x^{3}\)
Giải:
Mở rộng biểu thức và kiểm tra tính đúng đắn:
\(9 x \left(\right. x + 1 \left.\right)^{3} = 9 x \left(\right. x^{3} + 3 x^{2} + 3 x + 1 \left.\right) = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x\)\(\left(\right. x - 1 \left.\right)^{3} = x^{3} - 3 x^{2} + 3 x - 1\)
Cộng cả hai biểu thức:
\(9 x \left(\right. x + 1 \left.\right)^{3} + \left(\right. x - 1 \left.\right)^{3} = 9 x^{4} + 27 x^{3} + 27 x^{2} + 9 x + x^{3} - 3 x^{2} + 3 x - 1\)\(= 9 x^{4} + 28 x^{3} + 24 x^{2} + 12 x - 1\)
So với \(2 x^{3}\), ta thấy biểu thức không đúng. Có thể bài toán có lỗi. Nếu có sự nhầm lẫn, bạn có thể điều chỉnh lại nhé!
Cho $x=-1; y=-2$ thì $B=4$ là số dương. Bạn xem lại đề.