K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2021

b) x(x-4) - 2x+8 = 0
    x(x-4) - 2(x-4) = 0
    (x-2) (x-4) = 0
TH1: x-2=0              TH2: x-4=0
            x=2                          x=4
Vậy x\(\in\){2;4}

7 tháng 11 2021

\(b,\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\\ c,\Leftrightarrow\left(x-5\right)\left(x+5\right)-\left(x+5\right)=0\\ \Leftrightarrow\left(x+5\right)\left(x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\\ d,\Leftrightarrow\left(2x-1\right)^2-\left(2x-1\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x-1-2x-1\right)=0\\ \Leftrightarrow x=\dfrac{1}{2}\\ e,\Leftrightarrow\left(3x-1-x-5\right)\left(3x-1+x+5\right)=0\\ \Leftrightarrow\left(2x-6\right)\left(4x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\\ f,\Leftrightarrow\left(x-2\right)\left(x^2+2x+4\right)-\left(x-2\right)\left(x-12\right)=0\\ \Leftrightarrow\left(x-2\right)\left(x^2+x+16\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow x=2\)

13 tháng 12 2021

c: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)

25 tháng 3 2020

Bài 1:

a) (3x - 2)(4x + 5) = 0

<=> 3x - 2 = 0 hoặc 4x + 5 = 0

<=> 3x = 2 hoặc 4x = -5

<=> x = 2/3 hoặc x = -5/4

b) (2,3x - 6,9)(0,1x + 2) = 0

<=> 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0

<=> 2,3x = 6,9 hoặc 0,1x = -2

<=> x = 3 hoặc x = -20

c) (4x + 2)(x^2 + 1) = 0

<=> 4x + 2 = 0 hoặc x^2 + 1 # 0

<=> 4x = -2

<=> x = -2/4 = -1/2

d) (2x + 7)(x - 5)(5x + 1) = 0

<=> 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0

<=> 2x = -7 hoặc x = 5 hoặc 5x = -1

<=> x = -7/2 hoặc x = 5 hoặc x = -1/5

13 tháng 12 2020

bài 2:

a, (3x+2)(x^2-1)=(9x^2-4)(x+1)

(3x+2)(x-1)(x+1)=(3x-2)(3x+2)(x+1)

(3x+2)(x-1)(x+1)-(3x-2)(3x+2)(x+1)=0

(3x+2)(x+1)(1-2x)=0

b, x(x+3)(x-3)-(x-2)(x^2-2x+4)=0

x(x^2-9)-(x^3+8)=0

x^3-9x-x^3-8=0

-9x-8=0

tự tìm x nha

10 tháng 12 2021

\(a,\Leftrightarrow2x^2+10x-2x^2=12\Leftrightarrow x=\dfrac{12}{10}=\dfrac{6}{5}\\ b,\Leftrightarrow\left(5-2x-4\right)\left(5-2x+4\right)=0\\ \Leftrightarrow\left(1-2x\right)\left(9-2x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\\ c,\Leftrightarrow3x^2-3x^2+6x=36\Leftrightarrow x=6\\ d,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ e,\Leftrightarrow4x^2-4x+1-4x^2+196=0\\ \Leftrightarrow-4x=-197\Leftrightarrow x=\dfrac{197}{4}\)

\(f,\Leftrightarrow x^2+8x+16-x^2+1=16\Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\\ g,Sửa:\left(3x+1\right)^2-\left(x+1\right)^2=0\\ \Leftrightarrow\left(3x+1-x-1\right)\left(3x+1+x+1\right)=0\\ \Leftrightarrow2x\left(4x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{2}\end{matrix}\right.\\ h,\Leftrightarrow x^2+8x-x-8=0\\ \Leftrightarrow\left(x+8\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-8\end{matrix}\right.\\ i,\Leftrightarrow2x^2-13x+15=0\\ \Leftrightarrow2x^2+2x-15x-15=0\\ \Leftrightarrow\left(x+1\right)\left(2x-15\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{15}{2}\end{matrix}\right.\)

16 tháng 11 2021

a: \(x\in\left\{0;25\right\}\)

c: \(x\in\left\{0;5\right\}\)

29 tháng 10 2021

a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)

d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)

\(\Leftrightarrow x+3=0\)

hay x=-3

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

5 tháng 5 2019

a, (x+2)(x-3)=0

\(\left\{{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

=>S={-2;-3}

b, (x-5)(7-x)=0

\(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

=>S={5;7}

c, (2x+3)(-x+7)=0

\(\left\{{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\left\{{}\begin{matrix}2x=-3\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=7\end{matrix}\right.\)

=>S={-3/2;7}

5 tháng 5 2019

a) (x+2)(x+3)=0

<=> \(\left\{{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b) (x-5)(7-x)

<=> \(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

c) ( 2x+3)(-2+7)

<=>\(\left\{{}\begin{matrix}2x+3=0\\7-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{2}{7}\end{matrix}\right.\)

d) ( -10x+5)(2x+8)

<=>\(\left\{{}\begin{matrix}5-10x=0\\2x+8=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-4}{1}\end{matrix}\right.\)

e) (x-1)(x+5)(-3x+8)=0

<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\\8-3x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

f) (x-1)(3x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

g) (x-1)(x+2)(x-3)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)

h) (5x+3)(x2+4)(x-1)=0

<=> \(\left\{{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)

x2+4 > 0 với mọi x∈ R

<=>\(\left\{{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Bạn tự kết luận nha , thông cảm cho tớ !leuleu

13 tháng 12 2023

a: \(3\left(x-3\right)-6x=0\)

=>\(3x-9-6x=0\)

=>-3x-9=0

=>3x+9=0

=>3x=-9

=>\(x=-\dfrac{9}{3}=-3\)

b: Đề thiếu vế phải rồi bạn

c: \(2\left(x-3\right)+3x=9\)

=>2x-6+3x=9

=>5x-6=9

=>5x=6+9=15

=>x=15/5=3

d: \(x\left(x-11\right)+2\left(x-11\right)=0\)

=>\(\left(x-11\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)

e: \(x\left(x+2\right)+8=x^2\)

=>\(x^2+2x+8=x^2\)

=>2x+8=0

=>2x=-8

=>x=-8/2=-4

f: \(8\left(x+1\right)+2x=-2\)

=>\(8x+8+2x=-2\)

=>10x=-2-8=-10

=>\(x=-\dfrac{10}{10}=-1\)

g: 12-3(x+2)=0

=>3(x+2)=12

=>x+2=12/3=4

=>x=4-2=2