Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
1: Khi x=36 thì \(A=\dfrac{6}{2\cdot6-4}=\dfrac{6}{12-4}=\dfrac{6}{8}=\dfrac{3}{4}\)
2:
ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x< >4\end{matrix}\right.\)
\(C=B:A\)
\(=\left(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{3\sqrt{x}-x}{x-4}\right):\dfrac{\sqrt{x}}{2\sqrt{x}-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)+3\sqrt{x}-x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+3\sqrt{x}-x}{\sqrt{x}+2}\cdot\dfrac{2}{\sqrt{x}}=\dfrac{2}{\sqrt{x}+2}\)
3: \(C\cdot\sqrt{x}< \dfrac{4}{3}\)
=>\(\dfrac{2\sqrt{x}}{\sqrt{x}+2}-\dfrac{4}{3}< 0\)
=>\(\dfrac{2\sqrt{x}\cdot3-4\left(\sqrt{x}+2\right)}{3\left(\sqrt{x}+2\right)}< 0\)
=>\(6\sqrt{x}-4\sqrt{x}-8< 0\)
=>\(2\sqrt{x}-8< 0\)
=>\(\sqrt{x}< 4\)
=>\(0< =x< 16\)
Kết hợp ĐKXĐ của C, ta được: \(\left\{{}\begin{matrix}0< x< 16\\x< >4\end{matrix}\right.\)
a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:
\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)
b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)
\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)
c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)
\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)
hay \(x\in\left\{16;25;64\right\}\)
1. \(x=\frac{1}{9}\) thỏa mãn đk: \(x\ge0;x\ne9\)
Thay \(x=\frac{1}{9}\) vào A ta có:
\(A=\frac{\sqrt{\frac{1}{9}}+1}{\sqrt{\frac{1}{9}}-3}=-\frac{1}{2}\)
2. \(B=...\)
\(B=\frac{3\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\frac{4x+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{3x-9\sqrt{x}+x+3\sqrt{x}-4x-6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(B=\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
3. \(P=A:B=\frac{\sqrt{x}+1}{\sqrt{x}-3}:\frac{-6\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(P=\frac{\sqrt{x}+3}{-6}\)
Vì \(\sqrt{x}+3\ge3\forall x\)\(\Rightarrow\frac{\sqrt{x}+3}{-6}\le\frac{3}{-6}=-\frac{1}{2}\)
hay \(P\le-\frac{1}{2}\)
Dấu "=" xảy ra <=> x=0
a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)
\(=\sqrt{x}-1\)
a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
Đk: \(x>0\) và \(x\ne1\)
\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)
\(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)
b) Thay \(x=3+2\sqrt{2}\) vào A ta được:
\(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)
\(=\sqrt{2}+1-1=\sqrt{2}\)
(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))
a: Khi x=16 thì \(A=\dfrac{6}{16-3\cdot4}=\dfrac{6}{4}=\dfrac{3}{2}\)
b: P=A:B
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{6}{\sqrt{x}\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{6}\)
\(=\dfrac{\sqrt{x}+3}{\sqrt{x}}\)
c: \(P-1=\dfrac{\sqrt{x}+3-\sqrt{x}}{\sqrt{x}}=\dfrac{3}{\sqrt{x}}>0\)
=>P>1
a: \(A=\dfrac{\sqrt{x}+2}{\sqrt{x}+3}\)
Khi x=25 thì \(A=\dfrac{5+2}{5+3}=\dfrac{7}{8}\)
b: \(B=\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}+2}+\dfrac{x+4}{4-x}\)
\(=\dfrac{x+2\sqrt{x}+3\sqrt{x}-6-x-4}{x-4}\)
\(=\dfrac{5\sqrt{x}-10}{x-4}=\dfrac{5}{\sqrt{x}+2}\)
c: \(A\cdot B=\dfrac{5}{\sqrt{x}+2}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+3}=\dfrac{5}{\sqrt{x}+3}\)
Để A*B>1 thì \(\dfrac{5}{\sqrt{x}+3}-1>0\)
=>\(\dfrac{5-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(2-\sqrt{x}>0\)
=>căn x<2
=>0<=x<4
a: Sửa đề: \(B=\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
Khi x=9 thì \(B=\dfrac{\sqrt{9}+1}{\sqrt{9}+2}\)
\(=\dfrac{3+1}{3+2}=\dfrac{4}{5}\)
b: \(A=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{6+\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}+\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{\sqrt{x}+6}{\left(\sqrt{x}-2\right)\cdot\left(\sqrt{x}+2\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)+\sqrt{x}\left(\sqrt{x}+2\right)-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{x-5\sqrt{x}+6+x+2\sqrt{x}-\sqrt{x}-6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2x-4\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}+2}\)
c: P=A/B
\(=\dfrac{2\sqrt{x}}{\sqrt{x}+2}:\dfrac{\sqrt{x}+1}{\sqrt{x}+2}=\dfrac{2\sqrt{x}}{\sqrt{x}+1}\)
\(P-2=\dfrac{2\sqrt{x}}{\sqrt{x}+1}-2=\dfrac{2\sqrt{x}-2\sqrt{x}-2}{\sqrt{x}+1}\)
\(=\dfrac{-2}{\sqrt{x}+1}< 0\)
=>P<2