Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAMB và ΔDMC có
MA=MD
góc AMB=góc DMC
MB=MC
Do đó: ΔAMB=ΔDMC
=>AB=CD
b: Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
nên ABDC là hình bình hành
=>BD//AC
Xét ΔDCM và ΔABM có:
AM = MD ( GT )
BM = BC (AM là đường trung tuyến của ΔABC tại đỉnh A)
góc BMA = góc DMC ( hai góc đối đỉnh)
=> ΔDMC = Δ ABM (c.g.c)
=> Góc BAM = Góc MDC ( hai góc tương ứng)
mà Góc BAM và Góc MDC nằm ở vị trí so le trong
=> AB\\CD
b) xét ΔAKM và Δ DFM có
góc KMA = góc DMF ( 2 góc đối đỉnh)
góc BAM = góc MDC (cmt)
AM = MD ( GT )
=> ΔAKM = ΔDFM (g.c.g)
=> MK = MF ( 2 cạnh tương ứng)
=> M là trung điểm của KF
Học tốt
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔMAB=ΔMDC
b: Xét tứ giác ABDC có
M là trung điểm của AD
M là trung điểm của BC
Do đó: ABDC là hình bình hành
Suy ra: AB//CD
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
a,
Xét △ABC có:
BC2 = 172 = 289
AB2 + AC2 = 152 + 82 = 225 + 64 = 289
=> BC2 = AB2 + AC2
=> △ABC vuông
a: Xét ΔMAC và ΔMDB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔMAC=ΔMDB
b: Xét ΔMEB và ΔMFC có
ME=MF
\(\widehat{BME}=\widehat{CMF}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMEB=ΔMFC
=>\(\widehat{MEB}=\widehat{MFC}\)
=>\(\widehat{MFC}=90^0\)
=>CF\(\perp\)AD
c: Xét tứ giác BFCE có
M là trung điểm chung của BC và FE
=>BFCE là hình bình hành
=>BF//CE và BF=CE
Ta có: BF//CE
B\(\in\)FG
Do đó: BG//CE
Ta có: BF=CE
BF=BG
Do đó: BG=CE
Xét tứ giác BGEC có
BG//EC
BG=EC
Do đó: BGEC là hình bình hành
=>BE cắt GC tại trung điểm của mỗi đường
mà H là trung điểm của BE
nên H là trung điểm của GC
=>G,H,C thẳng hàng
a. Hình vẽ (1 điểm)
Xét ΔABM và ΔBCM có:
BM = MC
∠(AMB) = ∠(BMC)
AM = MD
⇒ ΔABM = ΔBCM (c.g.c) (1 điểm)