Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c)
I)
\(\frac{1}{6},\frac{1}{3},\frac{1}{2},\frac{2}{3},...\)
Quy đồng:
\(\frac{1}{6},\frac{2}{6},\frac{3}{6},\frac{4}{6},...\)
=> Phân số tiếp theo: \(\frac{5}{6}\)
II)
\(\frac{1}{8},\frac{5}{24},\frac{7}{24},...\)
Quy đồng: \(\frac{3}{24},\frac{5}{24},\frac{7}{24},...\)
=> Phân số tiếp theo: \(\frac{9}{24}=\frac{3}{8}\)
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 1:
Gọi độ dài quãng đường AB là x(km)
Thời gian đi là x/45(h)
Thời gian về là x/42(h)
Theo đề, ta có: x/45+x/42=15
hay x=9450/29
Bài 2:
Gọi ba số là a,b,c
Theo đề, ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{2}\\\dfrac{a}{5}=\dfrac{b}{7}\end{matrix}\right.\Leftrightarrow\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{15}=\dfrac{b}{10}=\dfrac{c}{21}=\dfrac{a+b+c}{15+10+21}=\dfrac{230}{46}=5\)
Do đó: a=75; b=50; c=105
Câu 2 :
b) \(\frac{x}{3}=\frac{-2}{9}\)
=> x = \(\frac{-2}{9}.3\) = \(\frac{-2}{3}\)
c) \(0,5x-\frac{2}{3}x=\frac{7}{12}\)
=> \(\frac{1}{2}x-\frac{2}{3}x=\frac{7}{12}\)
=> \(-\frac{1}{6}\)x = \(\frac{7}{12}\)
=> x = \(\frac{7}{12}:\frac{-1}{6}\)
=> x =\(\frac{-7}{2}\)
Đề 1 câu 5 :
\(3B=3^2+3^3+3^4+...+3^{201}\)
\(\Rightarrow2B=3B-B=3^{201}-3\)
\(\Rightarrow2B+3=\left(3^{201}-3\right)+3=3^{201}\)
Do đó n = 201
Lúc 12 giờ kim giờ ờ \(\frac{1}{2}\) và kim phút ở số 6
Vận tốc kim giờ : \(\frac{1}{12}\) ( vòng / giờ )
Vận tốc kim phút : \(1\) ( vòng / giờ )
Giả sử kim giờ đứng yên thì vận tốc kim phút so với kim giờ : \(1-\frac{1}{12}=\frac{11}{12}\) ( vòng / giờ )
Kim giờ các kim phút ( theo chiều kim đồng hồ ) : \(\frac{1}{2}+\frac{1}{24}=\frac{13}{24}\) ( vòng )
Kim phút đuổi kịp kim giờ trong : \(\frac{13}{24}\div\frac{11}{12}=\frac{13}{24}.\frac{12}{11}=\frac{13}{22}\) ( h )
Vậy : ........
b, -12/6 = -6/8 = 9/-12 = 21/-28
c, 15 phút = 0,25 giờ
45 phút = 0,75 giờ
78 phút = 1,3 giờ
150 phút = 2,5 giờ
b) \(\frac{-12}{16}\)=\(\frac{-3}{4}\)=\(\frac{-3\cdot2}{4\cdot2}\)=\(\frac{-6}{8}\)=\(\frac{-3\cdot3}{4\cdot3}\)=\(\frac{-9}{12}\)=\(\frac{9}{-12}\)=\(\frac{-3\cdot7}{4\cdot7}\)=\(\frac{-21}{28}\)=\(\frac{21}{-28}\)
c)15 phút=15/60 giờ=1/4 giờ=0,25 giờ
45 phút =45/60 giờ=3/4 giờ=0,75 giờ
78 phút =78/60 giờ=13/10 giờ=1,3 giờ
150 phút=150/60 giờ= 5/2 giờ=2,5 giờ