Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1a/
\(\frac{1}{1+x+xy}=\frac{xyz}{xyz+x+xy}=\frac{yz}{1+y+yz}\)
\(\frac{1}{1+z+xz}=\frac{y}{y+yz+xyz}=\frac{y}{1+y+yz}\)
Vậy \(M=\frac{1}{1+y+yz}+\frac{y}{1+y+yz}+\frac{yz}{1+y+yz}=1\)
Chiều về làm tiếp
Bài 1b:Lời giải này chủ yếu nhờ dự đoán trước Min là 2011/2012 đạt được khi x=2012
Ta có \(P=\frac{2012x^2-2.2012x+2012^2}{2012x^2}=\frac{\left(x-2012\right)^2+2011x^2}{2012x^2}\ge\frac{2011x^2}{2012x^2}=\frac{2011}{2012}\)
Bài 2: Dùng phân tích thành bình phương
\(10x^2+y^2+4z^2+6x-4y-4xz+5=\left(9x^2+6x+1\right)+\left(y^2-4y+4\right)+\left(x^2-4xz+4z^2\right)\)
\(=\left(3x+1\right)^2+\left(y-2\right)^2+\left(x-2z\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}3x+1=0\\y-2=0\\x-2z=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{3}\\y=2\\z=-\frac{1}{6}\end{cases}}}\)
Bài 3:
a/\(pt\Leftrightarrow\left(x+6\right)\left(x-5\right)\left(x^2-x+1\right)=0\Leftrightarrow x=-6,x=5\)
b/ta phân tích vế trái thành:\(\left(3x-3\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\Rightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)
\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3
3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)
4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)
1) \(\left(x-3\right)\left(x-5\right)+44\)
\(=x^2-3x-5x+15+44\)
\(=x^2-8x+59\)
\(=x^2-2.x.4+4^2+43\)
\(=\left(x-4\right)^2+43\ge43>0\)
\(\rightarrowĐPCM.\)
2) \(x^2+y^2-8x+4y+31\)
\(=\left(x^2-8x\right)+\left(y^2+4y\right)+31\)
\(=\left(x^2-2.x.4+4^2\right)-16+\left(y^2+2.y.2+2^2\right)-4+31\)
\(=\left(x-4\right)^2+\left(y+2\right)^2+11\ge11>0\)
\(\rightarrowĐPCM.\)
3)\(16x^2+6x+25\)
\(=16\left(x^2+\dfrac{3}{8}x+\dfrac{25}{16}\right)\)
\(=16\left(x^2+2.x.\dfrac{3}{16}+\dfrac{9}{256}-\dfrac{9}{256}+\dfrac{25}{16}\right)\)
\(=16\left[\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{256}\right]\)
\(=16\left(x+\dfrac{3}{16}\right)^2+\dfrac{391}{16}>0\)
-> ĐPCM.
4) Tương tự câu 3)
5) \(x^2+\dfrac{2}{3}x+\dfrac{1}{2}\)
\(=x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}+\dfrac{1}{2}\)
\(=\left(x+\dfrac{1}{3}\right)^2+\dfrac{7}{18}>0\)
-> ĐPCM.
6) Tương tự câu 5)
7) 8) 9) Tương tự câu 3).
Câu 1: xin sửa đề :D
CM: \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)là 1 scp
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)+1\)
\(=\left(n^2+3n\right)\left(n^2+3n+2\right)+1\)
\(=\left(n^2+3n\right)^2+2\left(n^2+3n\right)+1\)
\(=\left(n^2+3n+1\right)^2\)là scp
Xét A = ........ĐK : x\(\ne\)-1 (*)
B=....... ĐK : x\(\ne\)-1 ; x\(\ne\) 3 (**)
a) Ta có : x2-4x+3
\(\Leftrightarrow\)x2 -3x-x+3
\(\Leftrightarrow\)(x -1) (x-3)
.......................
\(\Leftrightarrow\)x=1(thỏa mãn đk (*)
.,,,,,,,,,,,x=3 (thỏa mãn ĐK(*)
Thay x=..... vào A, ta được:................................
...............................................................................
Vậy tai thì A=..... hoặc A =..................
b) Xét B=................... ĐK.............
Ta có x2 -2x-3
= x2--3x+x -3
= (x+1) (x-3)
\(\Rightarrow B=\frac{x+3}{x+1}+\frac{x-7}{\left(x+1\right)\left(x-3\right)}+\frac{1}{x-3}\)
= \(\frac{\left(x+3\right)\left(x-3\right)+x-7+x+1}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2-9+2x-6}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x^2+2x-15}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1\right)^2-16}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+1+4\right)\left(x+1-4\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{\left(x+5\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}\)
=\(\frac{x+5}{x+1}\)
Vậy B=.......với x\(\ne\)..............
c) +) Tìm x để B= 2
Để B=2 thì \(\frac{x+5}{x+1}\)=2
\(\Leftrightarrow\frac{x+5-2\left(x+1\right)}{x+1}=0\)
\(\Leftrightarrow x+5-2x-2=0\)
........................................................
Vậy để B=2 thì x=...........
TƯƠNG TỰ B=x-1
d) XÉT B=...........ĐK.....................
ĐỂ B>2 THÌ ........................
GIẢI RA
g) Xét........................
Ta có \(B=\frac{x+5}{x+1}=1+\frac{4}{x+1}\)
Vì x\(\in\)Z nên (x+1) \(\in\)Z
Do đó A\(\in\)Z \(\Leftrightarrow\)\(1+\frac{4}{X+1}\)\(\inℤ\)
\(\Leftrightarrow\frac{4}{X+1}\inℤ\)
\(\Leftrightarrow4⋮\left(X+1\right)\)
\(\Leftrightarrow\left(X+1\right)\inƯ\left(4\right)\)
\(\Leftrightarrow\left(X+1\right)\in\hept{\begin{cases}\\\end{cases}\pm1;\pm2;\pm4}\)
Nếu x+1=1\(\Leftrightarrow\)x=0(thỏa mãn ĐK(**); X\(\inℤ\)
.............................................................................................
...............................................................................
Vậy để B nguyên thì x\(\in\hept{\begin{cases}\\\end{cases}}\).......................................................
e) XIN LỖI MÌNH CHỈ BIẾT TÌM GTNN CỦA B VỚI MỌI GIA TRỊ CỦA X
a) \(\dfrac{x+1}{2}+\dfrac{3x-2}{3}=\dfrac{x-7}{12}\)
\(\Leftrightarrow\dfrac{6\left(x+1\right)+4\left(3x-2\right)}{12}=\dfrac{x-7}{12}\)
\(\Leftrightarrow6\left(x+1\right)+4\left(3x-2\right)=x-7\)
\(\Leftrightarrow6x+6+12x-8=x-7\)
\(\Leftrightarrow6x+12x-x=-7-6+8\)
\(\Leftrightarrow17x=-5\)
\(\Leftrightarrow x=\dfrac{-5}{17}\)
Vậy .........................
b) \(\dfrac{2x}{x-3}-\dfrac{5}{x+3}=\dfrac{x^2+21}{x^2-9}\left(ĐKXĐ:x\ne\pm3\right)\)
\(\Leftrightarrow\dfrac{2x\left(x+3\right)-5\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}=\dfrac{x^2+21}{\left(x-3\right)\left(x+3\right)}\)
\(\Rightarrow2x\left(x+3\right)-5\left(x-3\right)=x^2+21\)
\(\Leftrightarrow2x^2+6x-5x+15=x^2+21\)
\(\Leftrightarrow2x^2-x^2+x+15-21=0\)
\(\Leftrightarrow x^2+x-6=0\)
\(\Leftrightarrow x^2-2x+3x-6=0\)
\(\Leftrightarrow x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=-3\left(l\right)\end{matrix}\right.\)
Vậy \(S=\left\{2\right\}\)
d) \(\left(x-4\right)\left(7x-3\right)-x^2+16=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x^2-16\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3\right)-\left(x-4\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(7x-3-x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(6x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\6x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{7}{6}\end{matrix}\right.\)
Vậy .........................
P/s: các câu còn lại tương tự, bn tự giải nha
a: \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}B=\dfrac{-3}{3-1}=\dfrac{-3}{2}\\B=\dfrac{-\left(-1\right)}{3-\left(-1\right)}=\dfrac{1}{4}\end{matrix}\right.\)