K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nếu chia 15 dư 6 thì chắc chắn sẽ chia hết cho 3

Nếu chia 9 dư 1 thì chắc chắn sẽ không bao giờ chia hết cho 3

Do đó, hai điều này đối nghịch nhau

Từ đó suy ra, không có số tự nhiên nào chia 15 dư 6 và chia 9 dư 1

11 tháng 6

Giả sử tồn tại một số a chia cho 15 dư 6 và chia 9 dư 1 khi đó ta có:

 \(\left\{{}\begin{matrix}a=15k+6\left(k\in N\right)\\15k+6-1⋮9\end{matrix}\right.\) ⇒ 15k + 6 - 1 ⋮ 3  ⇒ 15k + 5 ⋮ 3 ⇒ 3.(5k + 1) + 2 ⋮ 3

⇒ 2 ⋮ 3 (vô lí) Điều giả sử là sai. 

Vậy không có số tự nhiên nào mà chia cho 15 dư 6 và chia 9 dư 1

    

1:

a chia 5 dư 3 nên a=5k+3

b chia 5 dư 2 nên b=5c+2

a*b=(5k+3)(5c+2)

=25kc+10k+15c+6

=5(5kc+2k+3c+1)+1 chia 5 dư 1

2:

Gọi ba số liên tiếp là a;a+1;a+2

Theo đề, ta có: 

(a+1)(a+2)-a(a+1)=50

=>a^2+3a+2-a^2-a=50

=>2a+2=50

=>2a=48

=>a=24

=>Ba số cần tìm là 24;25;26

17 tháng 10 2019

Ta có: a chia cho 3 dư 1 ⇒ a = 3q + 1 (q ∈N)

b chia cho 3 dư 2 ⇒ b = 3k + 2 (k ∈N)

a.b = (3q +1)(3k + 2) = 9qk + 6q + 3k +2

Vì 9 ⋮ 3 nên 9qk ⋮ 3

Vì 6 ⋮ 3 nên 6q ⋮ 3

Vì 3⋮ 3 nên 3k ⋮ 3

Vậy a.b = 9qk + 6q + 3k + 2 = 3(3qk + 2q + k) +2 chia cho 3 dư 2.(đpcm)

19 tháng 10 2016

a=5n+1

b=5k+2 

a^2=1 (mod 5)

b^2=4 (mod5)

(a^2+b^2)=0 (mod 5) 

không được dùng thì khai triển ra

a^2+b^2=(5n+1)^2+(5k+2)^2

25n^2+10n+1+25k^2+20k+4=5(5n^2...) chia hết cho 5

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

27 tháng 8 2017

Gọi k là một số nguyên, theo đề ta có: 
a=3k+1 
b=3k+2 
ab=(3k+1)(3k+2)=9k^2+9k+2 
vì 9k^2 và 9k chia hết cho 3 
nên ab chia 3 dư 2

27 tháng 8 2017

cám ơn bạn

28 tháng 8 2015

Tưởng có tính chất rồi chứ nhỉ:

a : b dư m

c : b dư n

=> a.c : b dư m.n

Áp dụng tính chất trên ta có:

a.b chia 3 dư 1.2

=> ab chia 3 dư 2

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

20 tháng 8 2015

theo bài ra ta có:

a=3q+1(qcn)

b=3k+2(kcn)

ab=(3q+1)(3k+2)=9qk+6q+3k+2=3(3qk+2q+k)+2

ta thấy:3(3qk+2q+k)chia hết cho 3

2 không chia hết cho 3 và 2<3

từ 2 điều trên suy ra ab chia cho 3 dư 2 (dpcm)

 

 

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

12 tháng 7 2015

Ta có : a = 3n+1
b = 3m+2
a.b= 3(3nm+m+2n) +2 số này chia 3 sẽ dư 2.

23 tháng 11 2017

a chia cho 4, 5, 6 dư 1

nên (a - 1) chia hết cho 4, 5, 6 

=> (a - 1) là bội chung của (4,5,6)

=> a - 1 = 60n 

=> a = 60n+1 

với 1 ≤ n < (400-1)/60 = 6,65 mặt khác a chia hết cho 7 

=> a = 7m 

Vậy 7m = 60n + 1 có 1 chia 7 dư 1

=> 60n chia 7 dư 6 mà 60 chia 7 dư 4 

=> n chia 7 dư 5 mà n chỉ lấy từ 1 đến 6 

=> n = 5 a = 60.5 + 1 = 301 

  • SKT_Twisted Fate Âm Phủ
  • suốt ngày chép bài
  • nhọc
  • nhọc
24 tháng 6 2016

Các ban giupws mk nha

Theo bài ra ta có :

a = 3q + 1 ( qen )

b = 3k + 2 ( ken )

ab = ( 3q + 1 ) ( 3k + 2 ) = 9qk + 6q + 3k + 2 = 3 ( 3qk + 2q + k )

ta thấy : 3 ( 3qk + 2q + k ) chia hết cho 3

2 ko chia hết cho 3 và 2 < 3

Từ 2 điều trên => ab chia 3 dư 2 ( dcpm )