Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho định lí: Nếu một đường thẳng cắt hai đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc so le trong bằng nhau thì các góc đồng vị bằng nhau
- Hãy cho biết giả thuyết của định lí đó
- Hãy cho biết kết luận của định lí đó
- Hãy chứng minh định lí đó
Được cập nhật Hôm qua lúc 20:29
- giả thiết là nếu một đường thẳng cắt 2 đường thẳng phân biệt trong số đó tạo thành 1 góc SLT( so le trong viết tắt) bằng nhau
- kết luận là thì các góc đồng vị bằng nhau
Chứng minh định lý: {c∩a={A}c∩b={B}⇒Aˆ1=B2ˆ;A2ˆ=B3ˆ{c∩a={A}c∩b={B}⇒A^1=B2^;A2^=B3^
Kết luận: A3ˆ=B2ˆ;A2ˆ=B1ˆ;A4ˆ=B3ˆ;A1ˆ=B4ˆ
hơi khó hiểu tí nha
Giả thiết: Nếu một đường thẳng cắt 2 đường thẳng phân biệt trogn số các góc tạo thành có một cặp góc so le trong bằng nhau
Kết luận: thì các cặp góc đồng vị bằng nhau.
Hướng dẫn nha:
Bạn vẽ hai đường thẳng phân biệt song song vs nhau
Vẽ một đường thẳng bất kì đi qua 2 đưuòng thẳng song song đó.
Khi đó sẽ tạo thành hai cặp góc so le trong và đồng vị bằng nhau. Vẽ kí hiệu bằng nhau vào nha.
Đáp án B
Ta có:
Giả thiết: "Đường thẳng cc cắt hai đường thẳng a,b và trong các góc tạo thành có một cặp góc so le trong bằng nhau" ; Kết luận: " Hai góc so le trong còn lại bằng nhau."
a)
Giả thiết: Một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau.
Kết luận: Hai đường thẳng đó song song.
b) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong bằng nhau.
a) Giả thiết: Một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau.
Kết luận: Hai đường thẳng đó song song.
b) Giả thiết: Một đường thẳng cắt hai đường thẳng song song.
Kết luận: Hai góc so le trong bằng nhau.
Ta có: \(\widehat {{A_1}} = \widehat {{B_1}}\) (gt)
\(\widehat {{A_3}} = \widehat {{A_1}}\) (2 góc đối đỉnh)
\( \Rightarrow \widehat {{A_3}} = \widehat {{B_1}}\) ( cùng bằng \(\widehat {{A_1}}\))
Mà \(\widehat {{A_2}} + \widehat {{A_3}} = 180^\circ ;\widehat {{B_1}} + \widehat {{B_4}} = 180^\circ \) ( 2 góc kề bù)
\( \Rightarrow \widehat {{A_2}} = \widehat {{B_4}}\)
- Gỉa thiết: Một đường thẳng cắt 2 đường thẳng phân biệt và trong số các góc tạo thành có một cặp góc so le trong bằng nhau
- Kết luận: Các góc đồng vị bằng nhau
giả thiết luôn luôn đứng trước chữ thì còn kết luận sẽ đứng sau chữ thì ok bạn vẽ hình ra tìm đâu là cặp góc SlT rồi chứng minh nó bằng nhau thì ta suy ra đc các góc đồng vị bằng nhau trong sách hình như có hướng dẫn mà