Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: MNBA là hình bình hành
=>MN//BA và MN=BA
MNCB là hình bình hành
=>MN//BC và MN=BC
MN//BA
MN//BC
mà BA,BC có điểm chung là B
nên A,B,C thẳng hàng
b: Ta có: MN=BA
MN=BC
Do đó: BA=BC
=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)
mà \(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NCB}=\hat{NBC}\)
=>NC=NB
mà NC=MB
và NB=MA
nên MB=MA
d: MNDC là hình bình hành
=>MN//CD và MN=CD
MN//CD
MN//CA
mà CD,CA có điểm chung là C
nên D,C,A thẳng hàng
Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)
mà \(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NDA}=\hat{NBC}\)
=>\(\hat{NDB}=\hat{NBD}\)
=>ND=NB
mà NB=MA và ND=MC
nên MA=MC
=>ΔMAC cân tại M
Ta có: ΔMAC cân tại M
mà MB là đường trung tuyến
nên MB⊥AC tại B
=>\(\hat{MBA}=90^0\)

a: MNBA là hình bình hành
=>MN//BA và MN=BA
MNCB là hình bình hành
=>MN//BC và MN=BC
MN//BA
MN//BC
mà BA,BC có điểm chung là B
nên A,B,C thẳng hàng
b: Ta có: MN=BA
MN=BC
Do đó: BA=BC
=>B là trung điểm của AC
c: Để MNCA trở thành hình thang cân thì \(\hat{MAB}=\hat{NCA}\)
mà \(\hat{MAB}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NCB}=\hat{NBC}\)
=>NC=NB
mà NC=MB
và NB=MA
nên MB=MA
d: MNDC là hình bình hành
=>MN//CD và MN=CD
MN//CD
MN//CA
mà CD,CA có điểm chung là C
nên D,C,A thẳng hàng
Để hình thang MNDA trở thành hình thang cân thì \(\hat{MAD}=\hat{NDA}\)
mà \(\hat{MAD}=\hat{NBC}\) (hai góc đồng vị, NB//MA)
nên \(\hat{NDA}=\hat{NBC}\)
=>\(\hat{NDB}=\hat{NBD}\)
=>ND=NB
mà NB=MA và ND=MC
nên MA=MC
=>ΔMAC cân tại M
Ta có: ΔMAC cân tại M
mà MB là đường trung tuyến
nên MB⊥AC tại B
=>\(\hat{MBA}=90^0\)

a) Vì tam giác ABC vuông tại A
=> BAC = 90 độ
=> Vì K là hình chiếu của H trên AB
=> HK vuông góc với AB
=> HKA = 90 độ
=> HKA = BAC = 90 độ
=> KH // AI
=> KHIA là hình thang
Mà I là hình chiếu của H trên AC
=> HIA = 90 độ
=> HIA = BAC = 90 độ
=> KHIA là hình thang cân
b) Vì KHIA là hình thang cân
=> KA = HI
= >KI = HA
Xét tam giác KAI vuông tại A và tam giác HIC vuông tại I có
KA = HI
KI = AH
=> Tam giác KAI = tam giác HIC ( cgv-ch)
=> KIA = ACB ( DPCM)
c) con ý này tớ nội dung chưa học đến thông cảm

a. Xét tam giác HCD cóHN=DN;HM=CM
=> MN là đường trung bình của tam giác HCD => MN//DC
=> DNMC là hình thang
b. Ta có MN là đường trung bình của tam giác HCD => MN=1/2CD
Mà AB=1/2CD => AB =MN
Do MN//CD và AB//CD => AB//MN
Xét tứ giác ABMN có AB//MN; AB=MN
=> ABMN là hình bình hành
c.Ta có MN//CD mà CD vg AD
=> MN vg AD
Xét tam giác ADM có DH và MN là 2 đường cao của tam giác
Mà chúng cắt nhau tại N nên N là trực tâm của tam giác ADM
=> AN là đường cao của tam giác ADM
=> AN vg DM
Do ABMN là hình bình hành nên AN//BM
=> BM vg DM => BMD =90*

a) BD, CE là các đường trung tuyến của \(\Delta ABC\)
\(\Rightarrow\)DA = DC; EA =EB
\(\Rightarrow\)ED là đường trung bình của \(\Delta ABC\)
\(\Rightarrow\)ED // BC; ED = 1/2 BC
\(\Delta GBC\)có MG = MB; NG = NC
\(\Rightarrow\)MN là đường trung bình của \(\Delta GBC\)
\(\Rightarrow\)MN // BC; MN = 1/2 BC
suy ra: MN // ED; MN = ED
\(\Rightarrow\)tứ giác MNDE là hình bình hành
c) MN = ED = 1/2 BC
\(\Rightarrow\)MN + ED = \(\frac{BC}{2}\)+ \(\frac{BC}{2}\)= BC
b)\(\frac{3xy+3}{9y+3}\)=\(\frac{3\left(xy+1\right)}{3\left(3y+1\right)}\)=\(\frac{xy+1}{3y+1}\) khác \(\frac{x}{3}\) sửa lại \(\frac{3xy+3}{9y+3}\)=\(\frac{xy+1}{3y+1}\)
c)\(\frac{3xy+3}{9y+3}\)=\(\frac{3\left(xy+1\right)}{3\left(3y+1\right)}\)=\(\frac{xy+1}{3y+1}\) khác \(\frac{x+1}{3+3}\) và \(\frac{x+1}{3+3}\)
\(\frac{x+1}{3+3}\)=\(\frac{x+1}{6}\)