Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 75×[(42011 - 1)/3] +25
A = 25×(42011- 1) +25
A= 25×4×42010 - 25 +25
A= 100 × 42010
A chia hết cho 100
Bài 2:
\(A=5\left(1+5\right)+5^3\left(1+5\right)+...+5^9\left(1+5\right)\)
\(=6\left(5+5^3+...+5^9\right)⋮6\)
Ra A= 5^11-5^3
Vì 5^11chia hết 125
5^3 chia hết cho125
=> 5^11-5^3 chia hết cho125
a) A=5(1+5)+53(1+5)+...+5199(1+5)
=(1+5)(5+53+....+5199) chia hết cho 6
b) A:31 dư 30 hay A-30 chia hết cho 31
Ta có A=5(1+5+52)+54(1+5+52)+57(1+5+52)+.....+598(1+5+52)
31(5+54+57+...+599) chia hết cho 31. Nên A chia cho 31 không dư
5+52+53+...+530=5(1+5)+53(1+5) +55(1+5)+...+529(1+5)=5.6+53.6+...+529.6
vì 5a.6 chia hết cho 6 nên ..... chia hết cho 6
5+52+53+...+530
=(5+52)+(53+54)+...+(529+530)
=5.(1+5)+53.(1+5)+...+529.(1+5)
=5.6+53.6+...+529.6
=6.(5+53+...+529) chia hết cho 6
3+32+33+...+320
=(3+32)+(33+34)+...+(319+320)
=3.(1+3)+33.(1+3)+...+319.(1+3)
=3.4+33.4+...+319.4
=4.(3+33+...+319) chia hết cho 4
A=(5+5^2)+(5^3+5^4)+...(5^299+5^300)
A=5(1+5)+5^2(1+5)+...+5^299(1+5)
A=5.6+5^2.6+...+5^299.6 => Achia hết cho 6.
Tường tự phần A nhóm 3 số với nhau chia hết cho 31
phần B đường nhiên sẽ chia hết cho 7 vì mỗi số hạng đều chia hết cho 7, nhóm 2 số với nhau chia hết cho 8
\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^7+5^8\right)=30+5^2.30+.....+5^6.30=30.\left(1+5^2+...+5^6\right)\)A chia hết cho 30
A = (5+52)+(53+54)+...+(57 + 58)
= 30 + 30.53+...+30.57
= 30.(1 + 53 + ... + 57) là bội của 30
\(B=5+5^2+5^3+5^4+...+5^{100}\)
=> \(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{99}+5^{100}\right)\)
=> \(B=5\left(1+5\right)+5^3\left(1+5\right)+....+5^{99}\left(1+5\right)\)
=> \(B=5.6+5^3.6+....+5^{99}.6\)
=> \(B=6\left(5+5^3+...+5^{99}\right)\)chia hết cho 6
=> B chia hết cho 6 (Đpcm)
Ta có: B=5+52+53+54+...+5100
=> B=(5+52)+(53+54)+...+(599+5100)
=> B=5.(1+5)+53.(1+5)+...+599.(1+5)
=> B=5.6+53.6+...+599.6
=> B=(5+53+...+599).6
=> B chia hết cho 6