Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1+ 1+1+ ...+ 1 +(\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{9900}+\dfrac{1}{10100}\))
=(1+1+1+...+1)+ (\(\dfrac{1}{1x2}+\dfrac{1}{2x3}+\dfrac{1}{3x4}+...+\dfrac{1}{99x100}+\dfrac{1}{100x101}\))
=100 +\(1-\dfrac{1}{101}=100-\dfrac{100}{101}=\dfrac{10000}{101}\)
1+1/2+1+1/6+1+1/12+...+1+1/9900
=1+1/1*2+1+1/2.3+....+1+1/99*100
=100*1+1-1/2+1/2-1/3+1/3-1/4...+1/99-1/100
=100+99/100
=10099/100
1/2+1/6+1/12+.......+1/10100
1/1x2+1/2x3+1/3x4+...........+1/100x101
1-1/2+1/2-1/3+1/3-..........+1/100-1/101
1-1/101
=100/101
cho bạn công thức mẫu trừ đi bao nhiêu thì tử là bấy nhiêu
vd 2/2x4=1/2-1/4
chúc bạn học tốt
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+..+\frac{1}{9900}+\frac{1}{10100}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}+\frac{1}{100\times101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
\(\frac{1\times2\times3\times4}{5\times6\times7\times8}\)
\(=\frac{1\times2\times3\times4}{5\times2\times3\times7\times4\times2}\)
\(=\frac{1}{5\times7\times2}\)
\(=\frac{1}{70}\)