Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để B là bội của 12 thì B phải chia hết cho 12 , hay có thể nói B phải vừa chia hết cho 3 và vừa chia hết cho 4.
Mà bản thân B đã chia hết cho 3 (do mọi số hạng của B đều chia hết cho 3) (1), nên chỉ cần chứng minh B chia hết cho 4!
Rút 3/4 ra:
=> B= (3/4)x(4 + 12 + 36 + 108 +... + 4649045868)
Có (4+12+36+108+...+4649045868) chia hết cho 4 (2)
Từ (1) và (2) => B chia hết cho 12.
Mình chỉ biết làm vậy thôi, cách của mình khi chứng minh chia hết cho 4 có nhiều số, mình cũng k bik cách ngắn hơn nữa, mong bạn hiểu.
B là B(12) thì B phải chia hết cho 12 hay B sẽ phải chia hết cho 3 và chia hêt cho 4.
Vì B đã chia hết cho 3 nên ta cần chứng minh B chia hết cho 4
Ta có: B=31+32+33+...+320
=(31+32)+(33+34)+...+(319+320)
=3(1+3)+33(1+3)+...+319(1+3)
=3.4+33.4+...+319+4
=4.(3+33+...+319)
Vì b chia hết cho 4 và 3 nên từ đó suy ra B chia hết cho 12
a, \(A=2+2^2+2^3+....+2^{60}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+....+\left(2^{59}+2^{60}\right)\)
\(=2.\left(1+2\right)+2^3.\left(1+2\right)+....+2^{59}.\left(1+2\right)\)
\(=2.3+2^3.3+....+2^{59}.3\)
\(=3.\left(2+2^3+...+2^{59}\right)⋮3\)(đpcm)
a)S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396) là bội của -20(ĐPCM)
b)S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )
a)
(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
=(-20)+[3^4(1-3+3^2-3^3)]+...+[3^96(1-3+3^2-3^3)
=(-20)(3^4+...+3^96)
Vay S la boi cua (-20)
b)?
a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)
=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)
=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)
=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)
=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20