K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

\(B=\left(\frac{1}{\sqrt{x}}-\frac{1}{1-\sqrt{x}}\right)\left(1-\frac{1}{1+\sqrt{x}}\right)\)ĐK : \(x>0;x\ne1\)

\(=\left(\frac{1-\sqrt{x}-\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}\right)\left(\frac{1+\sqrt{x}-1}{1+\sqrt{x}}\right)=\frac{1-2\sqrt{x}}{\sqrt{x}\left(1-\sqrt{x}\right)}.\frac{\sqrt{x}}{1+\sqrt{x}}=\frac{1-2\sqrt{x}}{1-x}\)

5 tháng 8 2020

\(A=1+\frac{2}{\sqrt{x}+1};B=\frac{\sqrt{x}}{\sqrt{x}-1}+\frac{1}{\sqrt{x}+2}-\frac{3\sqrt{x}}{x+\sqrt{x}-2}\)

đề bài là thế này ạ!?

1 tháng 9 2021

dài quá vậy??????????

1 tháng 7 2023

bạn gõ đề bằng latex để rõ đề

22 tháng 6 2017

viết = công thức toán đi

23 tháng 6 2017

sao viết đc

25 tháng 8 2023

a) \(\sqrt[]{x^2-4x+4}=x+3\)

\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)

\(\Leftrightarrow\left|x-2\right|=x+3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)

\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)

b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)

\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)

\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)

\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)

Giải pt (1)

\(\Delta=9+32=41>0\)

Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)

Giải pt (2)

\(\Delta=9+48=57>0\)

Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)

Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)

\(B=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\cdot\dfrac{\left(\sqrt{x}+1\right)}{\sqrt{x}-1}=\left(\sqrt{x}+1\right)^2\)

18 tháng 8 2020

\(B=\frac{\sqrt{x}}{\sqrt{x}-1}:\left(\frac{1}{\sqrt{x}+1}+\frac{2}{x-1}\right)\)

\(B=\frac{\sqrt{x}}{\sqrt{x}-1}:\left(\frac{\sqrt{x}-1+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right)\)

\(B=\frac{\sqrt{x}}{\sqrt{x}-1}:\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(B=\frac{\sqrt{x}}{\sqrt{x}-1}.\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}=\sqrt{x}\)