K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2023

\(B=1+4+4^2+4^3+\dots+4^{100}+4^{101}\\4B=4+4^2+4^3+4^4+\dots+4^{101}+4^{102}\\4B-B=(4+4^2+4^3+4^4+\dots+4^{101}+4^{102})-(1+4+4^2+4^3+\dots+4^{100}+4^{101})\\3B=4^{102}-1\\\Rightarrow B=(4^{102}-1):3\)

Vậy ta có đpcm.

25 tháng 12 2020

cho mi sửa lại:

\(a) A = 1^2+2^3+3^4+...+2014^{2015} b) B = 101^2+102^2+...+199^2+200^2 c) C = 1^3+2^4+3^5+4^6+...+99^{101}+100^{102}\)

9 tháng 3 2021

dấu 8 là nhân còn dấu ^ là mũ ạ

26 tháng 5 2017

a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2

26 tháng 5 2017

a) Có A=\(1+3+3^2+3^3+....+3^{100}\)

\(\Rightarrow\)3A =\(3\left(1+3+3^2+3^3+...+3^{100}\right)\)=\(3+3^2+3^3+3^4+...+3^{101}\)

\(\Rightarrow2A=3+3^2+3^3+....+3^{101}-1-3-3^2-3^3-....-3^{100}=3^{101}-1\)\(\Rightarrow A=\dfrac{3^{101}-1}{2}\)

Bài b/c/d : bn cứ lm tương tự.

25 tháng 9 2016

ai trả lời giúp tui đi

23 tháng 6 2017

Các bạn nhớ ủng hộ cho nhất sông núi  nhé

Cảm ơn bạn

23 tháng 6 2017

A = 1 . 2 + 2 . 3 + 3 . 4 + ... + 99 .100

3 . A = 1. 2 . 3 + 2 . 3 . 3 + 3 . 4 . 3 + ... + 99 . 100 . 3

3 . A = 1 . 2 . 3 + 2 . 3 . ( 4 - 1 ) + 3 . 4 . ( 5 - 2 ) + ... + 99 . 100 . ( 1001 - 998 )

3 . A = 1 . 2 . 3 + 2 . 3 . 4 - 1 . 2 . 3 + 3 . 4 . 5 - 2 . 3 . 4 + ... + 99 . 100 . 1001 - 998 . 99 . 100

3 . A = 99 . ( 100 . 10 )

A = ( 99 . 100 . 10 ) : 3

A = 33000

29 tháng 10 2023

$B=1+2+3+4+...+2022+2023$

Số các số hạng của B là:

$(2023-1):1+1=2023$ (số)

Tổng B bằng:

$(2023+1)\cdot2023:2=2047276$

$---$

$C=2+4+6+...+98+100$

Số các số hạng của C là:

$(100-2):2+1=50$ (số)

Tổng C bằng:

$(100+2)\cdot50:2=2550$

$---$

$D=1+3+5+...+97+99$

Số các số hạng của D là:

$(99-1):2+1=50$ (số)

Tổng D bằng:

$(99+1)\cdot50:2=2500$

$---$

$E=10+14+18+...+98+102$

Số các số hạng của E là:

$(102-10):4+1=24$ (số)

Tổng E bằng:

$(102+10)\cdot24:2=1344$

$Toru$

29 tháng 10 2023

Số lượng số hạng: 

\(\left(2023-1\right):1+1=2023\) (số hạng) 

Tổng B là:

\(B=\left(2023+1\right)\cdot2023:2=2047276\)

_______________

Số lượng số hạng là:

\(\left(100-2\right):2+1=50\) (số hạng)

Tổng C là: 

\(C=\left(100+2\right)\cdot50:2=2550\)

________________

Số lượng số hạng là:

\(\left(99-1\right):2+1=50\) (số hạng)

Tổng D là:

\(D=\left(99+1\right)\cdot50:2=2500\) 

________________

Số lượng số hạng là:

\(\left(102-10\right):4+1=24\) (số hạng)

Tổng E là:

\(E=\left(102+10\right)\cdot24:2=1334\)  

28 tháng 2 2020

\(A=3+3^2+3^3+...+3^{100}\)

\(\Leftrightarrow3A=3^2+3^3+3^4+3^5+....+3^{101}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{101}\right)-\left(3+3^2+3^3+3^4+...+3^{100}\right)\)

\(\Leftrightarrow2A=3^{101}-3\)

\(\Leftrightarrow A=\frac{3^{101}-3}{2}< 3^{100}-1\)

\(\Leftrightarrow A< B\)

28 tháng 2 2020

a. tính A = 3+3^2+3^3+3^4+.....+3^100

3A=3^2+3^3+3^4+3^5+....+3^100

3A-A=(3^2+3^3+3^4+....+3^101)-(3+3^2+3^3+3^4+.....+3^100)=3^101-3=3^100

mà B=3^100-1 => A<B

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450