K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

\(B=1+2+...+2^{1997}\)

\(=1+2+2^2+\left(2^3+2^4+2^5\right)+...+\left(2^{1995}+2^{1996}+2^{1997}\right)\)

\(=7+2^3\left(1+2+2^2\right)+...+2^{1995}\left(1+2+2^2\right)\)

\(=7+2^3\cdot7+...+2^{1995}\cdot7\)

\(=7+\left(2^3+...+2^{1995}\right)⋮7\)

11 tháng 12 2018

bạn tham khảo tại đây nhé:

Câu hỏi của nguyenthelinh

chúc bạn học tốt.

 A= (21+22+23)+(24+25+26)+...+(258+259+260)

   =20(21+22+23)+23(21+22+23)+...+257(21+22+23)

   =(21+22+23)(20+23+...+257)

   =     14(20+23+...+257) chia hết cho 7

Vậy A chia hết cho 7     

25 tháng 6 2015

gọi 1/41+1/42+1/43+...+1/80=S

ta có :

S>1/60+1/60+1/60+...+1/60

S>1/60 x 40

S>8/12>7/12

Vậy S>7/12

31 tháng 1 2017

a) S1 = 1 - 2 + 3 - 4 + ... + 1997 - 1998 + 1999

=> S1 = (-1) + (-1) + (-1) + ... + (-1) + 1999 

=> S1 = (-999) + 1999

=> S1 = 1000

31 tháng 1 2017

Ta có S1 = (1 - 2) + (3 - 4) + ....... + (1997 - 1998) + 1999

              = -1 + -1 + -1 + ..... + -1 + 1999

              = -999 + 1999

              =1000

24 tháng 1 2018

bài này vượt quá giới hạn của ta rồi

24 tháng 1 2018

Câu 1 cách làm:

Cậu có thể đưa ra chữ số tận cùng của mỗi lũy thừa, ví dụ như thế này để tính

2^(4k+1) có tận cùng là 2 nên 2^2009 có tận cùng là 2(2009=4.502+1)

30 tháng 10 2016

k cho minh mot cai ca ngay nau chua ai k minh het

huhuhuhuhuhuuhhuhuhuhuhuuhuhuhuhhuuuuuuuhuhuuuhuhuuhuuuhuhuhuuhuhuhuhuhuhuuhuhuhuuhuhuhuhuhuuhhuuhuhuhuuhuhuuhuhuhuuhuhuuhuhuuhuhhuuhuhuhhuhuhuhuhuhuuhuhuhuhuhuuhuhuhuuhuhuhuuhuhuhuuhuhuhuuhuhuhuuhuhuhuuhuhuhuhuuhuhuhuhuhuhhuuhuhuhuhuhuuhuhuhuuhuhuhuuhuhuhuhuuhuhuhuuhuhuhuuhuhuhuhuuhuhuhuhuhuhuuuhuuhuhuhuuhuhuhuhuuhuhuuhuuhuhuhuuhuhuhuuhuhuhuuhuuuhhuuhuuhuhuhuuhuhuhuhuhuuhuhuhuhuhuhuuhuhuhuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuhhhhhhhhhhhhhhhuhuhuuhuuhuhuuhuhuhuhuuhuh

19 tháng 10 2016

a)2^10+2^11+2^12

=2^10+2^10.2+2^10.2^2

=2^10.(1+2+2^2)

=2^10.7 chia hết cho 7

19 tháng 10 2016

2^10+2^11+2^12

=2^10+2^10.2+2^10.2^2

=2^10.(1+2+2^2)

=2^10.7 chia hết cho 7

9 tháng 11 2017

1)

a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)

\(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)

\(B=3+3^3+3^5+3^7+.....+3^{1991}\)

\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)

\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)

\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)

\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)

\(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)