Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,30+X=120:5+27\\ 30+X=24+27\\ 30+X=51\\ X=51-30=21\\ ---\\ b,40-3\times X=13\\ 3\times X=40-13=27\\ X=\dfrac{27}{3}=9\\ ---\\ 2\times X-8=16\\ 2\times X=16+8\\ 2\times X=24\\ X=\dfrac{24}{2}=12\\ \\---\\ \dfrac{1}{2}\times X-\dfrac{1}{3}=\dfrac{1}{4}\\ \dfrac{1}{2}\times X=\dfrac{1}{4}+\dfrac{1}{3}=\dfrac{7}{12}\\ X=\dfrac{7}{12}:\dfrac{1}{2}=\dfrac{7}{6}\)
A. \(\left(x+1\right)+\left(x+2\right)+......+\left(x+100\right)=5750\)
\(x+1+x+2+....+x+100=5750\)
\(100x+\left(1+2+3+.......+100\right)=5750\)
\(100x+5050=5750\)
\(100x=700\)
\(x=700:100=7\)
B. x+(1+2+......+100) = 2000
x + 5050 = 2000
x = 2000 - 5050
x= -3050
C. ( x-1 )+(x-2)+......+( x - 100 ) = 50
x-1+x-2+.........+x-100 = 50
100x + ( -1-2-........-100 ) = 50
100x + ( - 5050 ) = 50
100x = 50 + 5050
100 x = 5100
x = 5100 : 100
x = 51
A . \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=5750\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=5750\)
\(100x+5050=5750\)
\(100x=5750-5050\)
\(100x=700\)
\(\Rightarrow x=\frac{700}{100}=7\)
B. \(x+\left(1+2+3+4+5+....+100\right)=2000\)
\(x+\frac{\left(100+1\right).100}{2}=2000\)
\(x+5050=2000\)
\(\Rightarrow x=2000-5050=-3050\)
C. \(\left(x-1\right)+\left(x-2\right)+\left(x-3\right)+....+\left(x-100\right)=50\)
\(\left(x+x+x+...+x\right)-\left(1+2+3+...+100\right)=50\)
\(100x-5050=50\)
\(100x=5100\)
\(\Rightarrow x=\frac{5100}{100}=51\)
\(x:3\dfrac{1}{15}\) - \(\dfrac{3}{4}\) = 2\(\dfrac{1}{4}\)
\(x\): \(\dfrac{46}{15}\) - \(\dfrac{3}{4}\) = \(\dfrac{9}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(\dfrac{9}{4}\) + \(\dfrac{3}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(\dfrac{12}{4}\)
\(x\) : \(\dfrac{46}{15}\) = \(3\)
\(x\) = 3 \(\times\) \(\dfrac{46}{15}\)
\(x\) = \(\dfrac{46}{5}\)
\(x\) \(\times\) 3\(\dfrac{2}{3}\) - 1\(\dfrac{2}{3}\) = 2\(\dfrac{1}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) - \(\dfrac{5}{3}\) = \(\dfrac{7}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{7}{3}\) + \(\dfrac{5}{3}\)
\(x\) \(\times\) \(\dfrac{11}{3}\) = \(\dfrac{12}{3}\)
\(x\times\dfrac{11}{3}\) = 4
\(x\) = 4 : \(\dfrac{11}{3}\)
\(x\) = \(\dfrac{12}{11}\)
a) \(3\dfrac{1}{2}-1\dfrac{1}{4}\times1\dfrac{5}{6}\)
\(=\dfrac{7}{2}-\dfrac{5}{4}\times\dfrac{11}{6}\)
\(=\dfrac{7}{2}-\dfrac{55}{24}\)
\(=\dfrac{84}{24}-\dfrac{55}{24}\)
\(=\dfrac{29}{24}\)
b) \(2\dfrac{5}{6}+1\dfrac{2}{3}\div3\dfrac{3}{4}\)
\(=\dfrac{17}{6}+\dfrac{5}{3}\div\dfrac{15}{4}\)
\(=\dfrac{17}{6}+\dfrac{5}{3}\times\dfrac{4}{15}\)
\(=\dfrac{17}{6}+\dfrac{4}{9}\)
\(=\dfrac{153}{54}+\dfrac{24}{54}\)
\(=\dfrac{59}{18}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times...\times\left(1-\dfrac{1}{2015}\right)\\ =\dfrac{1}{2}\times\dfrac{2}{3}\times...\times\dfrac{2014}{2015}\\ =\dfrac{1}{2015}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times\left(1-\dfrac{1}{5}\right)\)
\(=\dfrac{1}{2}\times\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times\dfrac{4}{5}\)
\(=\dfrac{1}{2}\times\dfrac{1}{5}\)
\(=\dfrac{1}{10}\)
b) ( 1- \(\dfrac{1}{2}\) ) . ( 1 - \(\dfrac{1}{3}\) ) . ( 1 - \(\dfrac{1}{4}\) ) ... ( 1 - \(\dfrac{1}{x}\) ) = 0,01
\(\Rightarrow\) \(\dfrac{1}{2}\) . \(\dfrac{2}{3}\) . \(\dfrac{3}{4}\) ... \(\dfrac{x-1}{x}\) = 0,01
\(\Rightarrow\) \(\dfrac{1.2.3...\left(x-1\right)}{2.3.4...x}\) = 0,01
\(\Rightarrow\) \(\dfrac{1}{x}\) = 0,01
\(\Rightarrow\) \(\dfrac{1}{x}\) = \(\dfrac{1}{100}\)
\(\Rightarrow\) x = 100
Vậy x =100
=>1/2*2/3*...*(x-1)/x=1/100
=>1/x=1/100
=>x=100