Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do \(x\left(x+1\right)⋮2\Rightarrow\left(y^2+1\right)⋮2\Rightarrow\) y2 là số lẻ hay y là số lẻ.
Ta đặt \(y=2k+1\left(k\in Z\right)\), khi đó \(x\left(x+1\right)=\left(2k+1\right)^2+1\)
\(\Leftrightarrow\left(x^2+x+\frac{1}{4}\right)-\left(2k+1\right)^2=\frac{5}{4}\)
\(\Leftrightarrow4\left(x+\frac{1}{2}\right)^2-4\left(2k+1\right)^2=5\Leftrightarrow\left[\left(2x+1-4k-2\right)\right]\left[\left(2x+1+4k+2\right)\right]=5\)
\(\Leftrightarrow\left(2x-4k-1\right)\left(2x+4k+3\right)=5\)
Tới đây ta tìm được các cặp (x, k), từ đó suy ra các cặp (x,y)
Ta có: \(\hept{\begin{cases}x^{2019}\le x^{2020}\\y^{2019}\le y^{2020}\end{cases}}\)
\(\Rightarrow x^{2019}+y^{2019}\le x^{2020}+y^{2020}\)
( em ko biết đúng hay sai làm theo cách hiểu của em thôi )
a: Ta có: \(\left(x+3\right)\left(x+4\right)\left(x+5\right)\left(x+6\right)+1\)
\(=\left(x^2+9x+18\right)\left(x^2+9x+20\right)+1\)
\(=\left(x^2+9x\right)^2+38\left(x^2+9x\right)+360+1\)
\(=\left(x^2+9x\right)^2+2\cdot\left(x^2+9x\right)\cdot19+19^2\)
\(=\left(x^2+9x+19\right)^2\)
b. \(x^2+y^2+2x+2y+2\left(x+1\right)\left(y+1\right)+2\)
\(=\left(x^2+2x+1\right)+2\left(x+1\right)\left(y+1\right)+\left(y^2+2y+1\right)\)
\(=\left(x+1\right)^2+2\left(x+1\right)\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+1+y+1\right)^2=\left(x+y+2\right)^2\)
c. \(x^2-2x\left(y+2\right)+y^2+4y+4\)
\(=x^2-2x\left(y+2\right)+\left(y+2\right)^2\)
\(=\left(x-y-2\right)^2\)
d. \(x^2+2x\left(y+1\right)+y^2+2y+1\)
\(=x^2+2x\left(y+1\right)+\left(y+1\right)^2\)
\(=\left(x+y+1\right)^2\)
a, Ta có :
\(N=x^2\left(y-1\right)-5x\left(1-y\right)=x^2\left(y-1\right)+5x\left(y-1\right)=x\left(x+5\right)\left(y-1\right)\)
Thay x = -20 ; y = 1001 ta được :
\(-20\left(-20+5\right)\left(1001-1\right)=-20.\left(-15\right).1000=300000\)
b, Ta có : \(x\left(x-y\right)^2-y\left(x-y\right)^2+xy^2-x^2y=\left(x-y\right)^3+xy\left(x-y\right)\)
\(=\left(x-y\right)^4\left(1+xy\right)\)
Thay x - y = 7 ; xy = 9 ta được :
\(7^4.\left(1+9\right)=2401.10=24010\)
N = x2( y - 1 ) - 5x( 1 - y )
= x2( y - 1 ) + 5x( y - 1 )
= x( y - 1 )( x + 5 )
Tại x = -20 ; y = 1001 ta được :
N = -20( 1001 - 1 )( -20 + 5 )
= -20.1000.(-15)
= 1000.300
= 300 000
Q = x( x - y )2 - y( x - y )2 + xy2 - x2y
= x( x - y )2 - y( x - y )2 - xy( x - y )
= ( x - y )[ x( x - y ) - y( x - y ) - xy ]
= ( x - y )( x2 - xy - xy + y2 - xy )
= ( x - y )( x2 - 3xy + y2 )
= ( x - y )[ ( x2 - 2xy + y2 ) + 2xy - 3xy ]
= ( x - y )[ ( x - y )2 - xy ]
= 7[ 72 - 9 ]
= 7( 49 - 9 )
= 7.40 = 280
a. Ta có : (x + y)[(x - y)2 + xy]
= (x + y)(x2 - 2xy + y2 + xy)
= (x + y)(x2 - xy + y2)
= x3 + y3
b. Ta có : x3 + y3 - xy(x + y)
= x3 + y3 - x2y - xy2
=x2(x - y) + y2(y - x)
= (x - y)(x2 - y2)
= (x - y)2.(x + y) đpcm
c) Ta có (x + y)3 - 3xy(x + y)
= (x + y)[(x + y)2 - 3xy)
= (x + y)(x2 + 2xy + y2 - 3xy)
= (x + y)(x2 - xy + y2) (đpcm)
a) VP = ( x + y )( x2 - 2xy + y2 + xy ) = ( x + y )( x2 - xy + y2 ) = x3 + y3 = VT ( đpcm )
b) VP = ( x + y )( x - y )2 = ( x + y )( x2 - 2xy + y2 ) = x3 - 2x2y + xy2 + x2y - 2xy2 + y3 = x3 + y3 - x2y - xy2 = x3 + y3 - xy( x + y ) = VT ( đpcm )
c) VP = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 = x3 + y3 = ( x + y )( x2 - xy + y2 ) = VT ( đpcm )
A = 3x ( x2 - 2x + 3) - x2 ( 3x - 2 ) + 5 ( x2 - x )
A = 3x3 - 6x2 + 9x - 3x3 + 2x2 + 5x2 - 5x
A = ( 3x3 - 3x3 ) - ( 6x2 - 2x2 - 5x2 ) + ( 9x - 5x )
A = x
x^2+y^2=(x+y)^2-2xy
=5^2-2*3
=25-6
=19
x^3+y^3=(x+y)^3-3xy(x+y)
=5^3-3*3*5
=125-9*5
=80
(x-y)^2=(x+y)^2-4xy=5^2-4*3=13
=>\(x-y=\sqrt{13}\)
tìm x,biết:
a)x^3-6x^2+12x-9=0
b)8x^3+12x^3+6x-26=0
~ giúp mk nha,cảm ơn nhiều ~
\(A=\left(x+y\right)^2+\left(y-x\right)^2-2\left(x-y\right)\left(x+y\right)\)
\(=\left(x+y\right)^2+\left(y-x\right)^2+2\left(y-x\right)\left(x+y\right)\)
\(=\left(x+y+y-x\right)^2\)
\(=\left(2y\right)^2\)Thay \(y=\frac{1}{2}\)ta được:
\(\left(2.\frac{1}{2}\right)^2\)
\(=1\)
Vậy \(A=1\)tại \(x=2019\)và \(y=\frac{1}{2}\)
A = (x + y)^2 + (y - x)^2 - 2(x - y)(x + y)
A = x^2 + 2xy + y^2 + x^2 - 2xy + y^2 - 2x^2 + 2y^2
A = (x^2 + x^2 - 2x^2) + (2xy - 2xy) + (y^2 + y^2 + 2y^2)
A = 4y^2 (1)
Thay x = 2019 và y = 1/2 vào (1), ta có:
(4.1/2)^2 = 4