K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2015

a) A(x)+B(x)=(x^3+3x^2-4x-12)+(-2x^3+3x^2+4x+1)

                  =x^3+3x^2-4x-12-2x^3+3x^2+4x+1

                  =(x^3-2x^3)+(3x^2+3x^2)-(4x-4x)-(12-1)

                  =-x^3+6x^2-11

b) A(x)-B(x)=(x^3+3x^2-4x-12)-(-2x^3+3x^2+4x+1)

                 =x^3+3x^2-4x-12+2x^3-3x^2-4x-1

                 =(x^3+2x^3)+(3x^2-3x^2)-(4x+4x)-(12+1)

                 =3x^3-8x-13

c) Thay x=2 vào 2 đa thức A(x) và B(x) ta có

     A(2)=2^3+3*2^2-4*2-12

           =8+12-8-12

           =0

      B(2)=-2*2^3+3*2^2+4*2-1          

            =-16+(-4)+8-1

            =-13

Vậy x=2 là nghiệm của đa thức A(x) và không là nghiệm của đa thức B(x)

18 tháng 7 2020

Bài làm:

Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)

\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)

Vậy x = 0 là nghiêm của A(x)

Mà tại x = 0 thì giá trị của B(x) là:

\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)

=> x = 0 không là nghiệm của B(x)

18 tháng 7 2020

Bạn viết đề rõ hơn được không ạ ?

19 tháng 8 2016

b)A+B=x3+2x3+3x2-3x2-4x+4x-12+1

=3x3-11

a)A(-2)=5.-22-4.-2-4=5.4+8-4=20+8-4=24

a: A(x)=x^4-x^3-3x^2+2

B(x)=x^4+3x^2+5

b: A(x)+B(x)=2x^4-x^3+7

c: B(x)=x^2(x^2+3)+5>0 

=>B(x) ko có nghiệm

10 tháng 4 2020

dsssws

a: f(0)=0+0-0+3=3

=>x=0 ko là nghiệm của f(x)

g(0)=0+0+0+1=1

=>x=0 ko là nghiệm của g(x)

b: f(x)+g(x)

=x^3+4x^2-5x+3+x^3+3x^2-2x+1

=2x^3+7x^2-7x+4

c: f(x)-g(x)

=x^3+4x^2-5x+3-x^3-3x^2+2x-1

=x^2-3x+2

16 tháng 4 2018

a) Sắp xếp theo lũy thừa giảm dần

P(x)=x^5−3x^2+7x^4−9x^3+x^2−1/4x

=x^5+7x^4−9x^3−3x^2+x^2−1/4x

=x^5+7x^4−9x^3−2x^2−1/4x

Q(x)=5x^4−x^5+x^2−2x^3+3x^2−1/4

=−x^5+5x^4−2x^3+x^2+3x^2−1/4

=−x^5+5x^4−2x^3+4x^2−1/4

b)

P(x)+Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4^x)+(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x−x^5+5x^4−2x^3+4x^2−1/4

=(x^5−x^5)+(7x^4+5x^4)+(−9x^3−2x^3)+(−2x^2+4x^2)−1/4x−1/4

=12x^4−11x^3+2x^2−1/4x−1/4

P(x)−Q(x)

=(x^5+7x^4−9x^3−2x^2−1/4x)−(−x^5+5x^4−2x^3+4x^2−1/4)

=x^5+7x^4−9x^3−2x^2−1/4x+x^5−5x^4+2x^3−4x^2+1/4

=(x^5+x^5)+(7x^4−5x^4)+(−9x^3+2x^3)+(−2x^2−4x^2)−1/4x+1/4

=2x5+2x4−7x3−6x2−1/4x−1/4

c) Ta có

P(0)=0^5+7.0^4−9.0^3−2.0^2−1/4.0

⇒x=0là nghiệm của P(x).

Q(0)=−0^5+5.0^4−2.0^3+4.0^2−1/4=−1/4≠0

⇒x=0không phải là nghiệm của Q(x).

7 tháng 7 2020

Cho 2 đa thức: f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp sếp các đa thức trên theo luỹ thừa giảm dần của biến

f(x)= 9 - x5 + 4x - 2x3 + x2 - 7x4

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

g(x)= x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

b) Tìm bậc, hệ số cao nhất, hệ số tự do của đa thức f(x); g(x)

f(x) = -x5 - 7x4 - 2x3 + x2 + 4x + 9

+ Bậc : 5 _ hệ số cao nhất : -1 _ hệ số tự do : 9

g(x) = x5 + 7x4 + 2x3 + 2x2 - 3x - 9

+ Bậc : 5_ hệ số cao nhất : 1 _ hệ số tự do : -9

c) Tính f(x) + g(x); f(x) - g(x)

f( x) + g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) +( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9

= ( -x5 + x5 ) + ( -7x4 + 7x4 ) + ( -2x3 + 2x3 ) + ( x2 + 2x2 ) + ( 4x -3x ) + ( 9 - 9 )

= 3x2 + x

f( x) - g(x) = ( -x5 - 7x4 - 2x3 + x2 + 4x + 9 ) - ( x5 + 7x4 + 2x3 + 2x2 - 3x - 9 )

= -x5 - 7x4 - 2x3 + x2 + 4x + 9 - x5 - 7x4 - 2x3 - 2x2 + 3x + 9

= ( -x5 - x5 ) + ( -7x4 - 7x4 ) + ( -2x3 - 2x3 ) + ( x2 - 2x2 ) + ( 4x + 3x ) + ( 9 + 9 )

= -2x5 - 14x4 - 2x3 -x2 + 7x + 18

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a.

\(C(x)=A(x)+B(x)=(2x^3-3x^2-x+1)+(-2x^3+3x^2+5x-2)\)

\(=(2x^3-2x^3)+(-3x^2+3x^2)+(-x+5x)+(1-2)=4x-1\)

b.

$C(x)=4x-1=0$

$\Rightarrow x=\frac{1}{4}$

Vậy $x=\frac{1}{4}$ là nghiệm của $C(x)$

c.

\(D(x)=A(x)-B(x)=(2x^3-3x^2-x+1)-(-2x^3+3x^2+5x-2)\)

\(=2x^3-3x^2-x+1+2x^3-3x^2-5x+2\)

\(=4x^3-6x^2-6x+3\)

`@` `\text {dnv4510}`

`A)`

`P(x)+Q(x)=`\((2x^4+3x^2-3x^2+6)+(x^4+x^3-x^2+2x+1)\)

`= 2x^4+3x^2-3x^2+6+x^4+x^3-x^2+2x+1`

`= (2x^4+x^4)+x^3+(3x^2-3x^2-x^2)+2x+(6+1)`

`= 3x^4+x^3-x^2+2x+7`

`B)`

`P(x)+M(x)=2Q(x)`

`-> M(x)= 2Q(x) - P(x)`

`2Q(x)=2(x^4+x^3-x^2+2x+1)`

`= 2x^4+2x^3-2x^2+4x+2`

`-> 2Q(x)-P(x)=(2x^4+2x^3-2x^2+4x+2)-(2x^4+3x^2-3x^2+6)`

`= 2x^4+2x^3-2x^2+4x+2-2x^4-3x^2+3x^2-6`

`= (2x^4-2x^4)+2x^3+(-2x^2-3x^2+3x^2)+4x+(2-6)`

`= 2x^3-2x^2+4x-4`

Vậy, `M(x)=2x^3-2x^2+4x-4`

`C)`

Thay `x=-4`

`M(-4)=2*(-4)^3-2*(-4)^2+4*(-4)-4`

`= 2*(-64)-2*16-16-4`

`= -128-32-16-4`

`= -180`

`->` `x=-4` không phải là nghiệm của đa thức.

3 tháng 5 2023

thnk nha mik làm xong r

ha