Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9:
a: \(A=-0.5x^2yz\cdot\left(-3\right)xy^3z=1.5x^3y^4z^2\)
b: Hệ số là 1,5
Bậc là 9
a, \(g\left(x\right)-h\left(x\right)=\left(4x^2+3x+1\right)-\left(3x^2-2x-3\right)\)
\(=4x^2+3x+1-3x^2+2x+3=x^2+5x+4\)
b, \(f\left(-4\right)=\left(-4\right)^2+5.\left(-4\right)+4=16+\left(-20\right)+4=0\)
Nên -4 là nghiệm của f(x)
c, \(f\left(x\right)=0\Rightarrow x^2+5x+4=0\)
\(\Rightarrow x\left(x+1\right)+4\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
Vậy các nghiệm của f(x) là \(x\in\left\{-1;-4\right\}\)
a) \(A\left(x\right)=x^7-2x^6+2x^3-2x^4-x^7+x^5+2x^6-x+5+2x^4-x^5\)
\(A\left(x\right)=(x^7-x^7)+(-2x^6+2x^6)+2x^3+(-2x^4+2x^4)+(x^5-x^5)-x+5\)
\(A\left(x\right)=2x^3-x+5\)
- Bậc của đa thức A(x) là 3
- Hệ số tự do: 5
- Hệ số cao nhất: 2
b) \(B\left(x\right)=-3x^5+4x^4-2x+\dfrac{1}{2}-2x^4+3x-x^5-2x^4+\dfrac{5}{2}+x\)
\(B\left(x\right)=(-3x^5-x^5)+(4x^4-2x^4-2x^4)+(-2x+x+3x)+\left(\dfrac{1}{2}+\dfrac{5}{2}\right)\)
\(B\left(x\right)=-4x^5+2x+3\)
- Bậc của đa thức B(x) là 5
- Hệ số tự do: 3
- Hệ số cao nhất: \(-4\)
c) \(C\left(y\right)=5y^2-2.\left(y+1\right)+3y.\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y\left(y^2-2\right)+5\)
\(C\left(y\right)=5y^2-2y-2+3y^3-6y+5\)
\(C\left(y\right)=5y^2-2y+3+3y^3-6y\)
\(C\left(y\right)=5y^2-8y+3+3y^3\)
\(C\left(y\right)=3y^3+5y^2-8y+3\)
- Bậc của đa thức C(y) là 3
- Hệ số tự do: 3
- Hệ số cao nhất: 3
Q(x)=A(x)+B(x)+C(x)
\(=x^2+2x-7+x^3-2x^2-4+3x^2-2x+5\)
\(=x^3+2x^2-6\)
H(x)=A(x)-B(x)-C(x)
\(=x^2+2x-7-x^3+2x^2+4-3x^2+2x-5\)
\(=-x^3+4x-8\)
Sửa đề: N(x)=A(x)-B(x)+C(x)
\(=x^2+2x-7-x^3+2x^2-4+3x^2-2x+5\)
\(=-x^3+6x^2-6\)