Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = ax + bx + cx + ay + by + cy + az + bz + cz
= x.(a+b+c) + y.(a+b+c) + z.(a+b+c)
= (a+b+c).(x+y+z) (1)
Lại có: a + b + c = -3 (2)
x + y + z = -6 (3)
Từ (1) ; (2) ; (3) => A = -3.(-6) = 18
Vậy A = 18
b) B = ax - bx - cx - ay + by + cy - az + bz +cz
= x.(a-b-c) - y.(a-b-c) - z.(a-b-c)
= (a-b-c).(x-y-z)
Lại có: a - b - c = 0 ; x - y - z = 2016
=> B = 0.2016 = 0
Vậy B = 0
x=by+cz;y=ax+cz;z=ax+by
=>x+y+z=2(ax+by+cz)
\(\Leftrightarrow\frac{x+y+z}{2}=ax+by+cz\)
\(\Leftrightarrow y+z=\frac{x+y+z}{2}+ax;z+x=\frac{x+y+z}{2}+by;x+y=\frac{x+y+z}{2}+cz\)
\(\Leftrightarrow\frac{y+z-x}{2}=ax;\frac{z+x-y}{2}=by;\frac{x+y-z}{2}=cz\)
\(\Leftrightarrow\frac{y+z-x}{2x}=a;\frac{z+x-y}{2y}=b;\frac{x+y-z}{2z}=c\)
\(\Rightarrow A=\frac{1}{1+\frac{x+y-z}{2z}}+\frac{1}{1+\frac{y+z-x}{2x}}+\frac{1}{1+\frac{z+x-y}{2y}}=\frac{1}{\frac{x+y+z}{2x}}+\frac{1}{\frac{x+y+z}{2y}}+\frac{1}{\frac{x+y+z}{2z}}\)
\(=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
M = ax + ay + bx + by
= a(x + y) + b( x + y)
= (a + b)(x + y)
mà a + b = -5 ; x + y = 13
=> M = (-5).13 = -65
a) \(M=ax+bx+ay+by=x\cdot\left(a+b\right)+y\cdot\left(a+b\right)=\left(a+b\right)\cdot\left(x+y\right)=2\cdot17=34.\)
b) \(N=ax-by+bx-ay=a\left(x-y\right)+b\left(x-y\right)=\left(a+b\right)\left(x-y\right)=7\cdot1=7\)
a) suy ra a.(x+y)+b.(x+y)
suy ra (x+y) (a+b)
suy ra 17. (-2) = 34
b) suy ra a.(x-y) + b.(x-y)
suy ra (a+b) (x-y)
suy ra (-7).(-1)
mk làm bậy ko bít đúng hay ko
a) ax + ay - bx - by
= ax - bx + ay - by
= x( a - b) + y( a -b )
= ( a - b) ( x+y)
= -20 . 5
= -100
b) ax + ay + bx + by
= ax + bx + ay + by
= x( a+ b) + y( a+b)
= ( a+ b) ( x + y)
= - 7 . 17
= -119
hok tốt!!
A= ax - ay + bx - by
= a.(x-y)+b.(x-y)
=(x-y).(a+b)
=5.(-17)-85
A = ax - ay + bx - by
A = a . ( x - y ) + b . ( x - y )
A = ( a + b ) . ( x - y )
Vì a + b = -17 và x - y = 5
Thay vào biểu thức, ta được :
A = ( -17 ) . 5
A = -85
Vậy giá trị biểu thức của A là -85
ax + by = 5c (1); by + cz = 5a (2); cz + ax = 5b (3);
Lấy (1) - (2) + (3) về theo vế có : 2ax = - 5a + 5b + 5c => 2a(x + 5) = 5(a + b + c)
=> 1/(x + 5) = 2a/5(a + b + c) (4)
Tương tự :
1/(y + 5) = 2b/5(a + b + c) (5)
1/(z + 5) = 2c/5(a + b + c) (6)
Từ (4) + (5) + (6) :
M = 1/(x + 5) + 1/(y + 5) + 1/(z + 5) = 2/5