Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`@` `\text {Ans}`
`\downarrow`
`a)`
`3x(4x-1) - 2x(6x-3) = 30`
`=> 12x^2 - 3x - 12x^2 + 6x = 30`
`=> 3x = 30`
`=> x = 30 \div 3`
`=> x=10`
Vậy, `x=10`
`b)`
`2x(3-2x) + 2x(2x-1) = 15`
`=> 6x- 4x^2 + 4x^2 - 2x = 15`
`=> 4x = 15`
`=> x = 15/4`
Vậy, `x=15/4`
`c)`
`(5x-2)(4x-1) + (10x+3)(2x-1) = 1`
`=> 5x(4x-1) - 2(4x-1) + 10x(2x-1) + 3(2x-1)=1`
`=> 20x^2-5x - 8x + 2 + 20x^2 - 10x +6x - 3 =1`
`=> 40x^2 -17x - 1 = 1`
`d)`
`(x+2)(x+2)-(x-3)(x+1)=9`
`=> x^2 + 2x + 2x + 4 - x^2 - x + 3x + 3=9`
`=> 6x + 7 =9`
`=> 6x = 2`
`=> x=2/6 =1/3`
Vậy, `x=1/3`
`e)`
`(4x+1)(6x-3) = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + (3x-2)(8x+9)`
`=> 24x^2 - 12x + 6x - 3 = 7 + 24x^2 +11x - 18`
`=> 24x^2 - 6x - 3 = 24x^2 + 18x -11`
`=> 24x^2 - 6x - 3 - 24x^2 + 18x + 11 = 0`
`=> 12x +8 = 0`
`=> 12x = -8`
`=> x= -8/12 = -2/3`
Vậy, `x=-2/3`
`g)`
`(10x+2)(4x- 1)- (8x -3)(5x+2) =14`
`=> 40x^2 - 10x + 8x - 2 - 40x^2 - 16x + 15x + 6 = 14`
`=> -3x + 4 =14`
`=> -3x = 10`
`=> x= - 10/3`
Vậy, `x=-10/3`
2:
a: =-(x^2-12x-20)
=-(x^2-12x+36-56)
=-(x-6)^2+56<=56
Dấu = xảy ra khi x=6
b: =-(x^2+6x-7)
=-(x^2+6x+9-16)
=-(x+3)^2+16<=16
Dấu = xảy ra khi x=-3
c: =-(x^2-x-1)
=-(x^2-x+1/4-5/4)
=-(x-1/2)^2+5/4<=5/4
Dấu = xảy ra khi x=1/2
1)
a) \(A=x^2+4x+17\)
\(A=x^2+4x+4+13\)
\(A=\left(x+2\right)^2+13\)
Mà: \(\left(x+2\right)^2\ge0\) nên \(A=\left(x+2\right)^2+13\ge13\)
Dấu "=" xảy ra: \(\left(x+2\right)^2+13=13\Leftrightarrow x=-2\)
Vậy: \(A_{min}=13\) khi \(x=-2\)
b) \(B=x^2-8x+100\)
\(B=x^2-8x+16+84\)
\(B=\left(x-4\right)^2+84\)
Mà: \(\left(x-4\right)^2\ge0\) nên: \(A=\left(x-4\right)^2+84\ge84\)
Dấu "=" xảy ra: \(\left(x-4\right)^2+84=84\Leftrightarrow x=4\)
Vậy: \(B_{min}=84\) khi \(x=4\)
c) \(C=x^2+x+5\)
\(C=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\)
Mà: \(\left(x+\dfrac{1}{2}\right)^2\ge0\) nên \(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\)
Dấu "=" xảy ra: \(\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}=\dfrac{19}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
Vậy: \(A_{min}=\dfrac{19}{4}\) khi \(x=-\dfrac{1}{2}\)
a) (+) \(A\left(x\right)=6x^4-2x^3+5x-8x-6x^4+4x^3\)
\(A\left(x\right)=\left(6x^4-6x^4\right)+\left(-2x^3+4x^3\right)+\left(5x-8x\right)\)
\(A\left(x\right)=2x^3-3x\)
(+) \(B\left(x\right)=7x^5-3x+6x^2-8x-7x^5+x^3\)
\(B\left(x\right)=\left(7x^5-7x^5\right)+x^3+6x^2+\left(-3x-8x\right)\)
\(B\left(x\right)=x^3+6x^2-11x\)
b)
Đa thức \(A\left(x\right)=2x^3-3x\) có bậc 3
Đa thức \(B\left(x\right)=x^3+6x^2-11x\) có bậc 3
c) \(A\left(x\right)+B\left(x\right)=\left(2x^3-3x\right)+\left(x^3+6x^2-11x\right)\)
\(A\left(x\right)+B\left(x\right)=2x^3-3x+x^3+6x^2-11x\)
\(A\left(x\right)+B\left(x\right)=\left(2x^3+x^3\right)+6x^2+\left(-3x-11x\right)\)
\(A\left(x\right)+B\left(x\right)=3x^3+6x^2-14x\)
d) \(B\left(x\right)-A\left(x\right)=\left(x^3+6x^2-11x\right)-\left(2x^3-3x\right)\)
\(B\left(x\right)-A\left(x\right)=x^3+6x^2-11x-2x^3+3x\)
\(B\left(x\right)-A\left(x\right)=\left(x^3-2x^3\right)+6x^2+\left(-11x+3x\right)\)
\(B\left(x\right)-A\left(x\right)=-x^3+6x^2-8x\)
Câu 1:
\(A\left(x\right)+B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)+\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(6x+-3x+x\right)-\left(4x^3+2x^3\right)-5x^2+\left(-1+2\right)\)
\(=-6x^3-5x^2+4x+1\)
\(A\left(x\right)-B\left(x\right)\)
\(=\left(6x-4x^3+x-1\right)-\left(-3x-2x^3-5x^2+x+2\right)\)
\(=\left(-4x^3+2x^3\right)+5x^2+\left(6x+x-x\right)+\left(-1-2\right)\)
\(=-2x^3+5x^2+6x-3\)
a, A(x) = -x3 -2x2 + 5x +7
B(x) = -3x4 + x3 +10x2 -7
b, P(x) = -3x4 +8x2 +5x
Q(x) = 3x4 - 2x2 -12x2 -5x + 14
c, Thay x=-1 vào đa thức P(x) :
P(-1) = -3.(-1)4 + 8.(-1)2 + 5.(-1)
=-3 + 8 - 5
=0
=> x = (-1) là nghiệm của đa thức P(x).
(dấu chấm"." là viết tắt của dấu nhân "x")
Nếu bạn thấy đúng thì nha ! Cảm ơn.
a, A ( x ) = -x3 - 2x2 + 5x + 7
B ( x ) = -3x4 + x3 + 10x2 -7
b, P ( x ) = -3x4 + 8x2 + 5x
Q ( x ) = 3x4 - 2x2 - 12x2 - 5x + 14
c, Ta thay x = -1 vào đa thức P ( x )
P ( -1 ) = -3 . ( -1 )4 + 8 . ( -1 )2 + 5 . ( -1 )
= -3 + + 8 - 5
= 0
=> x = ( -1 ) là nghiệm của đa thức P ( x )
a) \(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6x^2\)
\(=\left(-4x^5+4x^5\right)+\left(-x^3\right)+\left(4x^2-6x^2\right)+5x+7\)
\(=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=-3x^4-4x^3+10x^2-8x+5x^3-7-8x\)
\(=-3x^4+\left(-4x^3+5x^3\right)+10x^2+\left[-8x+\left(-8x\right)\right]+\left(-7\right)\)
\(=-3x^4+x^3+10x^2+\left(-16x\right)+\left(-7\right)\)
b) \(A\left(x\right)=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)
\(B\left(x\right)=x^3+10x^2+\left(-16x\right)+\left(-7\right)+\left(-3x^4\right)\)
\(P\left(x\right)=A\left(x\right)+B\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)\)
\(Q\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-2x^3\right)+\left(-12x^2\right)+21x+14\)
c) Đặt \(P\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)=0\)
Thay x=-1 vào đa thức trên, ta có: \(8.\left(-1\right)^2+\left[-11.\left(-1\right)\right]+\left[-3.\left(-1\right)^4\right]=0\)
\(\Rightarrow8+11+\left(-3\right)=0\Rightarrow16=0\)(vô lí)
Vậy -1 không là nghiệm của đa thức P(x)
Bài 1 ( a )
\(A_x=-4x^5-x^3+4x^2+5x+9+4x^5-6x^2-2\)
\(=-x^3-2x^2+5x-7\)
\(B_x=-3x^4-2x^3+10x^2-8x+5x^3-7-2x^3+8x\)
\(=-3x^4+x^3+10x^2-7\)
Bài 1 ( b )
\(P_x=\left(-x^3-2x^2+5x-7\right)+\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7+3x^4+x^3+10x-7\)
\(=3x^4-2x^2+15x-14\)
\(Q_x=\left(-x^3-2x^2+5x-7\right)-\left(3x^4+x^3+10x-7\right)\)
\(=-x^3-2x^2+5x-7-3x^4-x^3-10x+7\)
\(=-3x^4-2x^3-5x\)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
a: A(x)+B(x)
\(=8x^4+8x^3-6x-15+8x^4+8x^3-4x^2-6x-10\)
\(=16x^4+16x^3-4x^2-12x-25\)
b: B(x)-A(x)
\(=8x^4+8x^3-4x^2-6x-10-8x^4-8x^3+6x+15\)
\(=-4x^2+5\)
c: \(C\left(x\right)\cdot\left(B\left(x\right)-A\left(x\right)\right)=\left(x+1\right)\left(-4x^2+5\right)\)
\(=-4x^3+5x-4x^2+5\)