Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Q = 3xy(x + 3y) - 2xy(x + 4y) - x²(y - 1) + y²(1 - x) + 36
= 3x²y + 9xy² - 2x²y - 8xy² - x²y + x² + y² - xy² + 36
= (3x²y - 2x²y - x²y) + (9xy² - 8xy² - xy²) + x² + y² + 36
= x² + y² + 36
b) Do x² ≥ 0 với mọi x ∈ R
y² ≥ 0 với mọi x ∈ R
Q = x² + y² + 36 ≥ 36 với mọi x ∈ R
Q nhỏ nhất khi x² + y² = 0
⇒ x = y = 0
Vậy x = y = 0 thì Q nhỏ nhất và giá trị nhỏ nhất của Q là 36

\(P=\frac{n^3+2n-1}{n^3+2n^2+2n+1}\)
\(=\frac{n^3+2n-1}{\left(n^3+1\right)+\left(2n^2+2n\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2-n+1\right)+2n\left(n+1\right)}\)
\(=\frac{n^3+2n-1}{\left(n+1\right)\left(n^2+n+1\right)}\)
Để phân thức xác định thì \(n+1\ne0\Rightarrow n\ne1\)
(vì \(n^2+n+1=\left(n+\frac{1}{2}\right)^2+\frac{3}{4}>0\))

bài 1: <=> 3x2+3x-2x2-2x+x+1=0 <=> x2+2x+1=0 <=>(x+1)2=0<=>x=-1
bài 2: =(x-3)2+1
vì (x-3)2>=0 với mọi x nên (x-3)2+1>=1 => GTNN của x2-6x+10 là 1 khi x=3

Đặt phép chia đc x4+x3+ax2+(a+b)x+2b+1=(x3+ax+b)(x+1)+(b+1)
Để..chia hết cho... thì b+1=0=>b=-1 (a tùy ý)
Vậy a tùy ý;b=-1

a: ĐKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x-2)(x+1)<>0
=>x<>2 và x<>-1
b: \(A=\dfrac{\left(x-1\right)^2\cdot\left(x+1\right)^2}{\left(x-2\right)\left(x+1\right)^2}=\dfrac{\left(x-1\right)^2}{x-2}\)
c:
A<1
=>A-1<0
\(A-1=\dfrac{x^2-2x+1-x+2}{x-2}=\dfrac{x^2-3x+3}{x-2}\)
=>x-2<0
=>x<2

Bạn nhân 2 cả 3 câu rồi phân tích ra hằng đẳng thức là được
a: DKXĐ: x^3-3x-2<>0
=>x^3-x-2x-2<>0
=>x(x-1)(x+1)-2(x+1)<>0
=>(x+1)(x^2-x-2)<>0
=>(x+1)(x-2)(x+1)<>0
=>\(x\notin\left\{2;-1\right\}\)
b: \(A=\dfrac{\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\dfrac{\left(x-1\right)^2}{x-2}\)
c: Để A<1 thì A-1<0
=>\(\dfrac{x^2-2x+1-x+2}{x-2}< 0\)
=>x-2<0
=>x<2