K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

bài 2:

\(A=\left(a+b+c\right)^3+\left(b+a-c\right)^3+\left(c+a-b\right)^3\)

\(=\left(c+b+a-2c\right)^3+\left(c+a+b-2b\right)^3\)

\(=\left(-2c\right)^3+\left(-2b\right)^3=-8\left(b+c\right)\)

sao nữa nhỉ :v

22 tháng 7 2017

rồi sao nua

11 tháng 4 2022

1)

<=> \(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

x= 0 

x = 3

2) <=> \(x\left(x-3\right)=4\)

=> \(x=\dfrac{4}{x}+3\)

 

11 tháng 4 2022

\(2,x^2-3x=4\)

\(\Leftrightarrow x^2-3x-4=0\)

\(\Delta=b^2-4ac=\left(-3\right)^2-4\left(-4\right)=25>0\)

\(\Rightarrow\)Pt có 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{3+5}{2}=4\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-3-5}{2}=-1\end{matrix}\right.\)

Vậy \(S=\left\{4;-1\right\}\)

\(3,x^4-5x^2+6=0\)

Đặt \(t=x^2\left(t\ge0\right)\)

Pt trở thành

\(t^2-5t+6=0\)

\(\Delta=b^2-4ac=\left(-5\right)^2-4.6=1>0\)

\(\Rightarrow\)Pt ó 2 nghiệm pb

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{5+1}{2}=3\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-5-1}{2}-3\end{matrix}\right.\)

\(\Rightarrow t=x^2\Leftrightarrow t=\pm\sqrt{3}\)

Vậy \(S=\left\{\pm\sqrt{3}\right\}\)

 

12 tháng 12 2020

Đề đúng chưa v

30 tháng 1 2019

2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)

\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)

\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)

30 tháng 1 2019

3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)

Dễ thấy

 \(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)

Từ phương trình đầu ta có:

\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)

\(\Leftrightarrow y\le1\)

Vậy \(x=y=1\)

10 tháng 11 2021

Đặt \(f\left(x\right)=P\left(x\right)+3x\)

\(f\left(x\right)=P\left(x\right)+3x\\ \Leftrightarrow\left\{{}\begin{matrix}f\left(-2\right)=0\\f\left(-4\right)=0\\f\left(-6\right)=0\end{matrix}\right.\Leftrightarrow f\left(x\right)=\left(x-m\right)\left(x+2\right)\left(x+4\right)\left(x+6\right)\\ \Leftrightarrow P\left(x\right)=\left(x-m\right)\left(x+2\right)\left(x+4\right)\left(x+6\right)+3x\\ \Leftrightarrow\left\{{}\begin{matrix}P\left(-2\right)=0\\P\left(0\right)=-m\cdot2\cdot4\cdot6+0=-48m\\P\left(-8\right)=\left(-8-m\right)\left(-6\right)\left(-4\right)\left(-2\right)-24=48m+360\end{matrix}\right.\)

Do đó \(A=\dfrac{-48m+48m+360+0}{2020}=\dfrac{360}{2020}=\dfrac{18}{101}\)

11 tháng 11 2021

anh ơi đề cho \(P\left(-2\right)=6\) r mà

27 tháng 10 2022

a: \(\left(x^2-2x+1\right)\left(x^2+bx+c\right)\)

\(=x^4+bx^3+cx^2-2x^3-2b\cdot x^2-2x\cdot c+x^2+bx+c\)

\(=x^4+x^3\left(b-2\right)+x^2\left(c-2b+1\right)+x\left(-2+b\right)+c\)

Theo đề, ta có: b-2=-2; c-2b+1=2; b-2=-2; a=c

=>b=0; c=1; a=c=1

b: (x-2)(x^2+bx+c)+a

\(=x^3+bx^2+cx-2x^2-2bx-2c+a\)

\(=x^3+x^2\left(b-2\right)+x\left(c-2b\right)-2c+a\)

Theo đề ta có: b-2=3; c-2b=-1; -2c+a=-3

=>b=5; c=-1+2b=-1+10=9; a=-3+2c=-3+2*9=15