K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2021

\(a,=x\left(x^2+2\right)\\ b,=2021\left(x+y\right)+x\left(x+y\right)=\left(x+2021\right)\left(x+y\right)\\ c,=49-\left(2x+y\right)^2=\left(7-2x-y\right)\left(7+2x+y\right)\)

6 tháng 11 2021

a) x3+2x
  = x(x2+2)
b) 2021x+2021y+x2+xy
  = (2021x+2021y)+(x2+xy)
  = 2021(x+y)+x(x+y)
  = (2021+x)(x+y)
c) 49-4x2-4xy-y2  
  = -[(2x)2+2.2x.y+y2] + 72
  = -(2x-y)2+72
  = 72-(2x-y)2
  = (7-2x+y)(7+2x-y)

1 tháng 8 2018

3)

e)

b) Ta có: 5x2+10y2-6xy-4x-2y +3= x2 -6xy +(3y)2 +4x2 +y2 -4x -2y +3

= (x - 3y)2 +(2x)2 -4x+1+ y2 -2y+1 +1

= (x-3y)2 + (2x -1)2 + (y-1)2 +1

Ta có :(x-3y)2 luôn lớn hơn hoặc bằng 0

(2x -1)2 luôn lớn hơn hoặc bằng 0

(y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 luôn lớn hơn hoặc bằng 0

=>(x-3y)2 + (2x -1)2 + (y-1)2 +1 >0

1 tháng 8 2018

3)

b)-x^2+4x-5=-(x^2-4x+5)

=-(x^2-2.2x+2^2)-1

=-(x+2)^2-1

vì -(x+2) nhỏ hơn hoặc bằng 0 \(\forall x\)

=>-(x+2)^2-1<1 \(\forall\)x

a: \(=\dfrac{x^2-x+1-4x}{xy}=\dfrac{x^2-5x+1}{xy}\)

b: \(=\dfrac{5xy^2-x^2y+4xy^2+xy^2}{3xy}\)

\(=\dfrac{10xy^2-x^2y}{3xy}=\dfrac{xy\left(10y-x\right)}{3xy}=\dfrac{10y-x}{3}\)

d: \(\dfrac{2x+4}{10}-\dfrac{2-x}{15}\)

\(=\dfrac{x+2}{5}+\dfrac{x-2}{15}\)

\(=\dfrac{3x+6+x-2}{15}=\dfrac{4x+4}{15}\)

e: \(=\dfrac{x+1}{2\left(x-1\right)}-\dfrac{x^2+3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x^2+2x+1-x^2-3}{2\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{2\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}=\dfrac{1}{x+1}\)

27 tháng 6 2017

a) \(A=x^3+2x^2y+xy^2\)

\(A=x\left(x^2+2xy+y^2\right)\)

\(A=x\left(x+y\right)^2\)

b) \(B=x^2-14x+49\)

\(B=\left(x-7\right)^2\)

c) \(C=4x^2-1\)

\(C=\left(2x-1\right)\left(2x+1\right)\)

d) \(D=x^3+27\)

\(C=\left(x+3\right)\left(x^2-3x+9\right)\)

22 tháng 8 2018

\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)

                                                                  \(=2x^3+16x^2-5x\)

                                                                  \(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)

                                                                  \(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)

3 tháng 9 2018

pạn ơi pạn đã lm đk chưa? nếu lm đk oy cho mk xem cách lm bài 2 nhé. cảm ơn pạn nhìu lắm

8 tháng 10 2017

undefined

8 tháng 10 2017

\(1,x^3-x=x\left(x^2-1\right)=x\left(x^2-1^2\right)=x\left(x-1\right)\left(x+1\right)\)

\(2,4ax^3-ax=ax\left(4x^2-1\right)=ax\left[\left(2x\right)^2-1^2\right]\) \(=ax\left(2x-1\right)\left(2x+1\right)\)

\(3,x^3-2x^2+x\)

\(=x^3-x^2-x^2+x\)

\(=\left(x^3-x^2\right)-\left(x^2-x\right)\)

\(=x^2\left(x-1\right)-x\left(x-1\right)\)

\(=\left(x-1\right)\left(x^2-x\right)=\left(x-1\right).x\left(x-1\right)=x\left(x-1\right)^2\)

\(4,y-4xy+4x^2y\)

\(=y\left(1-4x+4x^2\right)\)

\(=y\left(1^2-2.1.2x+\left(2x\right)^2\right)^{ }\)

\(=y\left(1-2x\right)^2\)

a: \(VT=x^2+2\cdot x\cdot\dfrac{1}{2}y+\dfrac{1}{4}y^2+\dfrac{3}{4}y^2+1\)

\(=\left(x+\dfrac{1}{2}y\right)^2+\dfrac{3}{4}y^2+1>0\forall x,y\)

c: \(VT=x^2-6xy+9y^2+4x^2-4x+1+y^2-2y+1+1\)

\(=\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1>0\forall x,y\)

25 tháng 7 2017

a)\(x^2+4x+4-y^2=\left(x+2\right)^2-y^2=\left(x+2-y\right)\left(x+2+y\right)\)

b)hình như sai đề

c)\(x^3+2x^2y+xy^2=x^3+x^2y+x^2y+xy^2=\left(x^2+xy\right)\left(x+y\right)=x\left(x+y\right)^2\)

d)\(5x+5y-x^2-2xy-y^2=5\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(5-x-y\right)\)

e)\(x^5-x^4+x^3-x^2=x^4\left(x-1\right)+x^2\left(x-1\right)=\left(x^4+x^2\right)\left(x-1\right)\)

25 tháng 7 2017

câu b : x2-16-4xy+4y2