Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(0\le x;y;z\le2\Rightarrow\left(2-x\right)\left(2-y\right)\left(2-z\right)\ge0\)
\(\Leftrightarrow8+2\left(xy+yz+zx\right)-4\left(x+y+z\right)-xyz\ge0\)
\(\Leftrightarrow2\left(xy+yz+zx\right)\ge4+xyz\ge4\)
\(\Rightarrow xy+yz+zx\ge2\)
\(\Rightarrow Q=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\le9-2.2=5\)
\(Q_{max}=5\) khi \(\left(x;y;z\right)=\left(0;1;2\right)\) và hoán vị
Câu 2, Do 0<x,y,z<=1 nên ta có:
\(\hept{\begin{cases}\left(x-1\right)\left(y-1\right)\ge0\\\left(y-1\right)\left(z-1\right)\ge0\\\left(z-1\right)\left(x-1\right)\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}xy+1\ge x+y\\yz+1\ge y+z\\xz+1\ge x+z\end{cases}}}\)
Thay vào VT ta có:
\(VT\le\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}=1\)(1)
Do x,y,z <= 1 nên x+y+z <=3 nên \(\frac{3}{x+y+z}\ge\frac{3}{3}=1\)(2)
Từ (1),(2) -> dpcm
1/ Vai trò của a, b, c là bình đẳng, không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\)
Khi đó \(3=a+b+c\le3a\Rightarrow1\le a\le2\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)
Ta có:
\(LHS=a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)
\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)
\(=9a^2-27a+27=9\left(a-1\right)\left(a-2\right)+9\le9\)
Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị.
P/s: Is that true?
Lời giải:
Do $x,y,z\in [0;2]\Rightarrow (x-2)(y-2)(z-2)\leq 0$
$\Leftrightarrow xyz-2(xy+yz+xz)+4(x+y+z)-8\leq 0$
$\Leftrightarrow 2(xy+yz+xz)\geq 4(x+y+z)-8+xyz$
Mà $4(x+y+z)-8+xyz=4.3-8+xyz=4+xyz\geq 4$ do $x,y,z\geq 0$
Do đó $2(xy+yz+xz)\geq 4$
Suy ra $x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=9-2(xy+yz+xz)\leq 9-4=5$
Ta có đpcm. Dấu "=" xảy ra khi $(x,y,z)=(2,1,0)$ và các hoán vị.
Có nhiều cách!
Cách 2:Giả sử \(x\ge y\ge z\Rightarrow3x\ge x+y+z=3\Rightarrow2\ge x\ge1\)
Ta có: \(x^2+y^2+z^2\le x^2+y^2+2yz+z^2=x^2+\left(y+z\right)^2\)
\(=x^2+\left(3-x\right)^2=2x^2-6x+9\)
\(=2\left(x-1\right)\left(x-2\right)+5\le5\)
Đẳng thức xảy ra khi \(\left(x;y;z\right)=\left(2;1;0\right)\) và các hoán vị
Vậy...
Cách 3: Dùng khai triển Abel: Câu hỏi của Thảo Lê - Toán lớp 8 - Học toán với OnlineMath (em không chắc lắm nhưng cứ đăng)
\(A=\sqrt{x^2+y\left(y-2x\right)}+\sqrt{y^2+z\left(z-2y\right)}+\sqrt{x^2+z\left(z-2x\right)}\)
\(=\sqrt{x^2-2xy+y^2}+\sqrt{y^2-2yz-z^2}+\sqrt{x^2-2xz+z^2}\)
\(=\sqrt{\left(x-y\right)^2}+\sqrt{\left(y-z\right)^2}+\sqrt{\left(z-x\right)^2}\)
\(=x-y+y-z+z-x\)
\(=0\)
ta chứng minh A>=2 (1) thật vậy
\(A\ge2\Leftrightarrow\left(x+y+z\right)^2\ge4\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge x^2+y^2+z^2+xyz\)
\(\Leftrightarrow2xy+2yz+2xz\ge xyz\)
từ giả thiết => \(0\le x;y;z\le2\)do đó \(2xy+2yz+2zx\ge2xy\ge xyz\)
vậy (1) được chứng minh. dấu "=" xảy ra khi (x;y;z)=(2;0;0) và các hoán vị
Không mất tính tổng quát, ta có thể giả sử \(x\ge y\ge z\).Khi đó:
\(5=x+y+z\le3x\le6\Leftrightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó:
\(\Leftrightarrow A\ge\sqrt{x}+\sqrt{3-x+2\sqrt{2}\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Vì \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x\)
\(=3+2\sqrt{3x-x^2}=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}\)
\(=\left(\sqrt{2}+1\right)^2\)(vì \(\left(x-1\right)\left(2-x\right)\ge0\)theo (*)) nên \(\sqrt{x}+\sqrt{3-x}\ge\sqrt{2}+1\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\)đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị
Không mất tính tổng quát, giả sử: \(x\ge y\ge z\). Khi đó:
\(5=x+y+z\le3x\le6\Rightarrow\frac{5}{3}\le x\le2\Rightarrow\left(x-1\right)\left(2-x\right)\ge0\)(*)
Mặt khác, vì \(0\le y,z\le2\)nên \(\left(y-2\right)\left(z-2\right)\ge0\Leftrightarrow yz\ge2\left(y+z\right)-4\)
\(\Leftrightarrow yz\ge2\left(5-x\right)-4=6-2x\)
Do đó: \(A=\sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{x}+\sqrt{y+z+2\sqrt{yz}}\)
\(\ge\sqrt{x}+\sqrt{5-x+2\sqrt{6-2x}}=\sqrt{x}+\sqrt{3-x+2\sqrt{2}.\sqrt{3-x}+2}\)
\(=\sqrt{x}+\sqrt{\left(\sqrt{3-x}+\sqrt{2}\right)^2}=\sqrt{x}+\sqrt{3-x}+\sqrt{2}\)
Ta có: \(\left(\sqrt{x}+\sqrt{3-x}\right)^2=x+2\sqrt{x\left(3-x\right)}+3-x=3+2\sqrt{3x-x^2}\)
\(=3+2\sqrt{\left(x-1\right)\left(2-x\right)+2}\ge3+2\sqrt{2}=\left(1+\sqrt{2}\right)^2\)(theo (*))
Do đó \(\sqrt{x}+\sqrt{3-x}\ge1+\sqrt{2}\)
Vậy \(A\ge2\sqrt{2}+1\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}0\le x,y,z\le2;x+y+z=5\\\left(x-1\right)\left(2-x\right)=0\\yz=6-2x\end{cases}}\Leftrightarrow x=y=2;z=1\)
Vậy giá trị nhỏ nhất của A là \(2\sqrt{2}+1\), đạt được khi \(\left(x,y,z\right)=\left(2,2,1\right)\)và các hoán vị.
\(A=x^2+y^2+z^2\le\left(x+y+z\right)^2=9\)
gtln của A = 9
Với \(x=y=z=1\)
easy không ? =)
Có 0 <= x,y,z => xyz >= 0
Có x,y,z <=2 => (2-x)(2-y)(2-z)>=0 => 8 - 4(x+y+z) + 2(xy+yz+zx) -xyz >=0
Từ đó => 8 - 4(a+b+c) +2(ab+bc+ca)>=0
=> 8 - 4(a+b+c) + (a+b+c)^2 >= a^2+b^2+c^2
=> 8 -4.3 +3^2 >=A (vì x+y+z=3)
=> 5>= A
Dấu "=" xảy ra khi x=2,y=1,z=0
Vậy Max A =5 khi x=2,y=1,z=0