Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ra vừa thôi mà mấy bài đó sử dùng hằng đẳng thức là ra mà cần gì phải hỏi
a. x2-x+1= x2-2.x.1/2+12=(x-1)2\(\ge\)0
b. \(x^2+x+2=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
c. \(-x^2+x-3=-\left(x^2-x+3\right)=-\left(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{11}{4}\right)=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]=-\left(x-\frac{1}{2}\right)^2-\frac{11}{4}\ge-\frac{11}{4}\)

a) \(A=x^2+2x+3=x^2+2x+1+2\)
\(=\left(x+1\right)^2+2\ge2\)
Vậy A luôn dương với mọi x
b) \(B=-x^2+4x-5=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+2^2\right)-1\)
\(=-\left(x-2\right)^2-1\le-1\)
Vậy B luôn âm với mọi x
a)\(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2\)
Vậy x2 +2x+3 luôn dương.
b)\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\le-1\)
Vậy -x2 +4x-5 luôn luôn âm.

a Ta có 4x2 - 4x + 3 = (4x2 - 4x + 1) + 2 = (2x - 1)2 + 2 \(\ge\)2 > 0 (đpcm)
b) Ta có y - y2 - 1
= -(y2 - y + 1)
= -(y2 - y + 1/4) - 3/4
= -(y - 1/2)2 - 3/4 \(\le-\frac{3}{4}< 0\)(đpcm)
a) 4x2 - 4x + 3 = ( 4x2 - 4x + 1 ) + 2 = ( 2x - 1 )2 + 2 ≥ 2 > 0 ∀ x ( đpcm )
b) y - y2 - 1 = -( y2 - y + 1/4 ) - 3/4 = -( y - 1/2 ) - 3/4 ≤ -3/4 < 0 ∀ x ( đpcm )

\(x^2-\left(y-3\right)^2-4x+4\)
\(=x^2-\left(y^2-6y+9\right)-4x+4\)
\(=x^2-y^2+6y-9-4x+4\)
\(=\left(x^2-4x+4\right)-\left(y^2-6y+9\right)\)
\(=\left(x-2\right)^2-\left(y-3\right)^2\)
\(=\left[\left(x-2\right)-\left(y-3\right)\right]\left[\left(x-2\right)+\left(y-3\right)\right]\)
\(=\left(x-y+5\right)\left(x+y-5\right)\)
1.
x2 - ( y - 3 )2 - 4x + 4
= ( x2 - 4x + 4 ) - ( y - 3 )2
= ( x - 2 )2 - ( y - 3 )2
= [ ( x - 2 ) - ( y - 3 ) ][ ( x - 2 ) + ( y - 3 ) ]
= ( x - 2 - y + 3 )( x - 2 + y - 3 )
= ( x - y + 1 )( x + y - 5 )
2.
a) Ta có : 2x4 + 8x3 + 9x2 - 4x - 5
= 2x4 + 10x2 - x2 + 8x3 - 4x - 5
= ( 2x4 - x2 ) + ( 8x3 - 4x ) + ( 10x2 - 5 )
= x2( 2x2 - 1 ) + 4x( 2x2 - 1 ) + 5( 2x2 - 1 )
= ( 2x2 - 1 )( x2 + 4x + 5 )
=>(2x4 + 8x3 + 9x2 - 4x - 5) : ( 2x2 - 1 ) = x2 + 4x + 5
b) Ta có : x2 + 4x + 5 = ( x2 + 4x + 4 ) + 1 = ( x + 2 )2 + 1 ≥ 1 > 0 ∀ x
=> đpcm

a) \(A=x^2-2x+5\)
\(=\left(x^2-2x+1\right)+4\)
\(=\left(x-1\right)^2+4\)
Vì \(\left(x-1\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-1\right)^2+4\ge0;\forall x\)
b) a sẽ làm tắt 1 vài bước nhé khi nào kiểm tra thì em làm theo mẫu a là được
\(B=4x^2+4x+11\)
\(=4\left(x^2+x+\frac{11}{4}\right)\)
\(=4\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{11}{4}\right)\)
\(=4\left[\left(x+\frac{1}{2}\right)^2+\frac{10}{4}\right]\)
\(=4\left(x+\frac{1}{2}\right)^2+10\ge10;\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\)
\(\Leftrightarrow x=\frac{-1}{2}\)
Vậy \(B_{min}=10\Leftrightarrow x=\frac{-1}{2}\)
c) Tìm GTLN nhé
\(C=5-8x-x^2\)
\(=-x^2-2.x.4-16+16+5\)
\(=-\left(x+4\right)^2+21\)
Vì \(-\left(x+4\right)^2\le0;\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21;\forall x\)
Dấu "="xảy ra\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x=-4\)
Vậy\(C_{max}=21\Leftrightarrow x=-4\)
A = x2 - 2x + 5
= ( x2 - 2x + 1 ) + 4
= ( x - 1 )2 + 4 ≥ 4 > 0 ∀ x ( đpcm )
B = 4x2 + 4x + 11
= ( 4x2 + 4x + 1 ) + 10
= ( 2x + 1 )2 + 10 ≥ 10 ∀ x
Đẳng thức xảy ra <=> 2x + 1 = 0 => x = -1/2
=> MinB = 10 <=> x = -1/2
C = 5 - 8x - x2
= -( x2 + 8x + 16 ) + 21
= -( x + 4 )2 + 21 ≤ 21 ∀ x
Đẳng thức xảy ra <=> x + 4 = 0 => x = -4
=> MaxC = 21 <=> x = -4

a) x2-6x+10
=x2-6x+9+1
=(x-3)2+1 \(\ge\) 0 (vì (x-3)2\(\ge\)0)
vậy x^2-6x+10 luôn luôn dương với mọi x
4x-x2-5
=-x2+4x-4-1
=-(x2-4x+4)-1
=-(x-2)2-1\(\le\)-1 ( vì -(x-2)2\(\le\)0 )
vậy 4x-x^2-5 luôn luôn âm với mọi x

\(A=x\left(x-6\right)+10=x^2-6x+10\)
\(=\left(x-3\right)^2+1>0\) với mọi x
\(B=x^2-2x+9y^2-6y+3=\left(x^2-2x+1\right)+\left(9y^2-6y+1\right)+1\)
\(=\left(x-1\right)^2+\left(3y-1\right)^2+1>0\) với mọi x;y
a, Ta có: A=x2+2x+3 =x2+2x+1+2
= (x+1)2+2>0
b, B= -(x2-4x+5) = -(x2-4x+4)-1
= -(x-2)2-1<0
Chúc bạn học tốt!
a)x2+2x+3
=x2+2.x.1+12+2
=(x+1)2+2
Vì (x+1)2\(\ge0\)
Suy ra:(x+1)2+2\(\ge2\)(đpcm)
b)-x2+4x-5
=-(x2-4x+5)
=-(x2-2.2x+4)-1
=-(x-2)2-1
Vì -(x-2)2\(\le0\)
Suy ra -(x-2)2-1\(\le-1\)(đpcm)